Polarization (Lie algebra) In representation theory , polarization is the maximal totally isotropic subspace of a certain skew-symmetric bilinear form on a Lie algebra . The notion of polarization plays an important role in construction of irreducible unitary representations of some classes of Lie groups by means of the orbit method [ 1] as well as in harmonic analysis on Lie groups and mathematical physics .
Definition
Let
G
{\displaystyle G}
be a Lie group,
g
{\displaystyle {\mathfrak {g}}}
the corresponding Lie algebra and
g
∗
{\displaystyle {\mathfrak {g}}^{*}}
its dual . Let
⟨
f
,
X
⟩
{\displaystyle \langle f,\,X\rangle }
denote the value of the linear form (covector)
f
∈
g
∗
{\displaystyle f\in {\mathfrak {g}}^{*}}
on a vector
X
∈
g
{\displaystyle X\in {\mathfrak {g}}}
. The subalgebra
h
{\displaystyle {\mathfrak {h}}}
of the algebra
g
{\displaystyle {\mathfrak {g}}}
is called subordinate of
f
∈
g
∗
{\displaystyle f\in {\mathfrak {g}}^{*}}
if the condition
∀
X
,
Y
∈
h
⟨
f
,
[
X
,
Y
]
⟩
=
0
{\displaystyle \forall X,Y\in {\mathfrak {h}}\ \langle f,\,[X,\,Y]\rangle =0}
,
or, alternatively,
⟨
f
,
[
h
,
h
]
⟩
=
0
{\displaystyle \langle f,\,[{\mathfrak {h}},\,{\mathfrak {h}}]\rangle =0}
is satisfied. Further, let the group
G
{\displaystyle G}
act on the space
g
∗
{\displaystyle {\mathfrak {g}}^{*}}
via coadjoint representation
A
d
∗
{\displaystyle \mathrm {Ad} ^{*}}
. Let
O
f
{\displaystyle {\mathcal {O}}_{f}}
be the orbit of such action which passes through the point
f
{\displaystyle f}
and let
g
f
{\displaystyle {\mathfrak {g}}^{f}}
be the Lie algebra of the stabilizer
S
t
a
b
(
f
)
{\displaystyle \mathrm {Stab} (f)}
of the point
f
{\displaystyle f}
. A subalgebra
h
⊂
g
{\displaystyle {\mathfrak {h}}\subset {\mathfrak {g}}}
subordinate of
f
{\displaystyle f}
is called a polarization of the algebra
g
{\displaystyle {\mathfrak {g}}}
with respect to
f
{\displaystyle f}
, or, more concisely, polarization of the covector
f
{\displaystyle f}
, if it has maximal possible dimensionality, namely
dim
h
=
1
2
(
dim
g
+
dim
g
f
)
=
dim
g
−
1
2
dim
O
f
{\displaystyle \dim {\mathfrak {h}}={\frac {1}{2}}\left(\dim \,{\mathfrak {g}}+\dim \,{\mathfrak {g}}^{f}\right)=\dim \,{\mathfrak {g}}-{\frac {1}{2}}\dim \,{\mathcal {O}}_{f}}
.
Pukanszky condition
The following condition was obtained by L. Pukanszky :[ 2]
Let
h
{\displaystyle {\mathfrak {h}}}
be the polarization of algebra
g
{\displaystyle {\mathfrak {g}}}
with respect to covector
f
{\displaystyle f}
and
h
⊥
{\displaystyle {\mathfrak {h}}^{\perp }}
be its annihilator :
h
⊥
:=
{
λ
∈
g
∗
|
⟨
λ
,
h
⟩
=
0
}
{\displaystyle {\mathfrak {h}}^{\perp }:=\{\lambda \in {\mathfrak {g}}^{*}|\langle \lambda ,\,{\mathfrak {h}}\rangle =0\}}
. The polarization
h
{\displaystyle {\mathfrak {h}}}
is said to satisfy the Pukanszky condition if
f
+
h
⊥
∈
O
f
.
{\displaystyle f+{\mathfrak {h}}^{\perp }\in {\mathcal {O}}_{f}.}
L. Pukanszky has shown that this condition guaranties applicability of the Kirillov 's orbit method initially constructed for nilpotent groups to more general case of solvable groups as well.[ 3]
Properties
Polarization is the maximal totally isotropic subspace of the bilinear form
⟨
f
,
[
⋅
,
⋅
]
⟩
{\displaystyle \langle f,\,[\cdot ,\,\cdot ]\rangle }
on the Lie algebra
g
{\displaystyle {\mathfrak {g}}}
.[ 4]
For some pairs
(
g
,
f
)
{\displaystyle ({\mathfrak {g}},\,f)}
polarization may not exist.[ 4]
If the polarization does exist for the covector
f
{\displaystyle f}
, then it exists for every point of the orbit
O
f
{\displaystyle {\mathcal {O}}_{f}}
as well, and if
h
{\displaystyle {\mathfrak {h}}}
is the polarization for
f
{\displaystyle f}
, then
A
d
g
h
{\displaystyle \mathrm {Ad} _{g}{\mathfrak {h}}}
is the polarization for
A
d
g
∗
f
{\displaystyle \mathrm {Ad} _{g}^{*}f}
. Thus, the existence of the polarization is the property of the orbit as a whole.[ 4]
If the Lie algebra
g
{\displaystyle {\mathfrak {g}}}
is completely solvable , it admits the polarization for any point
f
∈
g
∗
{\displaystyle f\in {\mathfrak {g}}^{*}}
.[ 5]
If
O
{\displaystyle {\mathcal {O}}}
is the orbit of general position (i. e. has maximal dimensionality), for every point
f
∈
O
{\displaystyle f\in {\mathcal {O}}}
there exists solvable polarization.[ 5]
References
^ Corwin, Lawrence; GreenLeaf, Frederick P. (25 January 1981). "Rationally varying polarizing subalgebras in nilpotent Lie algebras" . Proceedings of the American Mathematical Society . 81 (1). Berlin: American Mathematical Society: 27– 32. doi :10.2307/2043981 . ISSN 1088-6826 . Zbl 0477.17001 .
^ Dixmier, Jacques; Duflo, Michel; Hajnal, Andras; Kadison, Richard; Korányi, Adam; Rosenberg, Jonathan; Vergne, Michele (April 1998). "Lajos Pukánszky (1928 – 1996)" (PDF) . Notices of the American Mathematical Society . 45 (4). American Mathematical Society: 492– 499. ISSN 1088-9477 .
^ Pukanszky, Lajos (March 1967). "On the theory of exponential groups" (PDF) . Transactions of the American Mathematical Society . 126 . American Mathematical Society: 487– 507. doi :10.1090/S0002-9947-1967-0209403-7 . ISSN 1088-6850 . MR 0209403 . Zbl 0207.33605 .
^ a b c Kirillov, A. A. (1976) [1972], Elements of the theory of representations , Grundlehren der Mathematischen Wissenschaften, vol. 220, Berlin, New York: Springer-Verlag , ISBN 978-0-387-07476-4 , MR 0412321
^ a b Dixmier, Jacques (1996) [1974], Enveloping algebras , Graduate Studies in Mathematics , vol. 11, Providence, R.I.: American Mathematical Society , ISBN 978-0-8218-0560-2 , MR 0498740