Share to: share facebook share twitter share wa share telegram print page

Power outage

Vehicle lights provided the only illumination during the 2009 Ecuador electricity crisis.

A power outage (also called a powercut, a power out, a power failure, a power blackout, a power loss, or a blackout) is the loss of the electrical power network supply to an end user.

There are many causes of power failures in an electricity network. Examples of these causes include faults at power stations, damage to electric transmission lines, substations or other parts of the distribution system, a short circuit, cascading failure, fuse or circuit breaker operation.

Power failures are particularly critical at sites where the environment and public safety are at risk. Institutions such as hospitals, sewage treatment plants, and mines will usually have backup power sources such as standby generators, which will automatically start up when electrical power is lost. Other critical systems, such as telecommunication, are also required to have emergency power. The battery room of a telephone exchange usually has arrays of lead–acid batteries for backup and also a socket for connecting a generator during extended periods of outage. During a power outage, there is a disruption in the supply of electricity, resulting in a loss of power to homes, businesses, and other facilities. Power outages can occur for various reasons, including severe weather conditions (such as storms, hurricanes, or snowstorms), equipment failure, grid overload, or planned maintenance.

Types

Blackout
Transient fault

Power outages are categorized into three different phenomena, relating to the duration and effect of the outage:

  • A transient fault is a loss of power typically caused by a fault on a power line, e.g. a short circuit or flashover. Power is automatically restored once the fault is cleared.
  • A brownout is a drop in voltage in an electrical power supply. The term brownout comes from the dimming experienced by incandescent lighting when the voltage sags. Brownouts can cause poor performance of equipment or even incorrect operation.
  • Outages may last from a few minutes to a few weeks depending on the nature of the blackout and the configuration of the electrical network.
  • A blackout is the total loss of power to a wider area and of long duration.[1] It is the most severe form of power outage that can occur. Blackouts which result from or result in power stations tripping are particularly difficult to recover from quickly.

Rolling blackouts occur when demand for electricity exceeds supply, and allow some customers to receive power at the required voltage at the expense of other customers who get no power at all. They are a common occurrence in developing countries, and may be scheduled in advance or occur without warning. They have also occurred in developed countries, for example in the California electricity crisis of 2000–2001, when government deregulation destabilized the wholesale electricity market. Blackouts are also used as a public safety measure, such as to prevent a gas leak from catching fire (for example, power was cut to several towns in response to the Merrimack Valley gas explosions), or to prevent wildfires around poorly maintained transmission lines (such as during the 2019 California power shutoffs).

Protecting the power system from outages

Tree limbs creating a short circuit in power lines during a storm. This typically results in a power outage in the area supplied by these lines

In power supply networks, the power generation and the electrical load (demand) must be very close to equal every second to avoid overloading of network components, which can severely damage them. Protective relays and fuses are used to automatically detect overloads and to disconnect circuits at risk of damage.

Under certain conditions, a network component shutting down can cause current fluctuations in neighboring segments of the network leading to a cascading failure of a larger section of the network. This may range from a building, to a block, to an entire city, to an entire electrical grid.

Modern power systems are designed to be resistant to this sort of cascading failure, but it may be unavoidable (see below). Moreover, since there is no short-term economic benefit to preventing rare large-scale failures, researchers have expressed concern that there is a tendency to erode the resilience of the network over time, which is only corrected after a major failure occurs. In a 2003 publication, Carreras and co-authors claimed that reducing the likelihood of small outages only increases the likelihood of larger ones.[2] In that case, the short-term economic benefit of keeping the individual customer happy increases the likelihood of large-scale blackouts.

The Senate Committee on Energy and Natural Resources held a hearing in October 2018 to examine "black start", the process of restoring electricity after a system-wide power loss. The hearing's purpose was for Congress to learn about what the backup plans are in the electric utility industry in the case that the electric grid is damaged. Threats to the electrical grid include cyberattacks, solar storms, and severe weather, among others. For example, the "Northeast Blackout of 2003" was caused when overgrown trees touched high-voltage power lines. Around 55 million people in the U.S. and Canada lost power, and restoring it cost around $6 billion.[3]

Protecting computer systems from power outages

Computer systems and other electronic devices containing logic circuitry are susceptible to data loss or hardware damage that can be caused by the sudden loss of power. These can include data networking equipment, video projectors, alarm systems as well as computers. To protect computer systems against this, the use of an uninterruptible power supply or 'UPS' can provide a constant flow of electricity if a primary power supply becomes unavailable for a short period of time. To protect against surges (events where voltages increase for a few seconds), which can damage hardware when power is restored, a special device called a surge protector that absorbs the excess voltage can be used.

Restoring power after a wide-area outage

Restoring power after a wide-area outage can be difficult, as power stations need to be brought back online. Normally, this is done with the help of power from the rest of the grid. In the total absence of grid power, a so-called black start needs to be performed to bootstrap the power grid into operation. The means of doing so will depend greatly on local circumstances and operational policies, but typically transmission utilities will establish localized 'power islands' which are then progressively coupled together. To maintain supply frequencies within tolerable limits during this process, demand must be reconnected at the same pace that generation is restored, requiring close coordination between power stations, transmission and distribution organizations.

Blackout inevitability and electric sustainability

Comparison of duration of power outages (SAIDI value), in 2014.

Self-organized criticality

It has been argued on the basis of historical data[4] and computer modeling[5][6] that power grids are self-organized critical systems. These systems exhibit unavoidable[7] disturbances of all sizes, up to the size of the entire system. This phenomenon has been attributed to steadily increasing demand/load, the economics of running a power company, and the limits of modern engineering.[8]

While blackout frequency has been shown to be reduced by operating it further from its critical point, it generally is not economically feasible, causing providers to increase the average load over time or upgrade less often resulting in the grid moving itself closer to its critical point. Conversely, a system past the critical point will experience too many blackouts leading to system-wide upgrades moving it back below the critical point. The term critical point of the system is used here in the sense of statistical physics and nonlinear dynamics, representing the point where a system undergoes a phase transition; in this case the transition from a steady reliable grid with few cascading failures to a very sporadic unreliable grid with common cascading failures. Near the critical point the relationship between blackout frequency and size follows a power-law distribution.[6][8]

Cascading failure becomes much more common close to this critical point. The power-law relationship is seen in both historical data and model systems.[8] The practice of operating these systems much closer to their maximum capacity leads to magnified effects of random, unavoidable disturbances due to aging, weather, human interaction etc. While near the critical point, these failures have a greater effect on the surrounding components due to individual components carrying a larger load. This results in the larger load from the failing component having to be redistributed in larger quantities across the system, making it more likely for additional components not directly affected by the disturbance to fail, igniting costly and dangerous cascading failures.[8] These initial disturbances causing blackouts are all the more unexpected and unavoidable due to actions of the power suppliers to prevent obvious disturbances (cutting back trees, separating lines in windy areas, replacing aging components etc.). The complexity of most power grids often makes the initial cause of a blackout extremely hard to identify.

Leaders are dismissive of system theories that conclude that blackouts are inevitable, but do agree that the basic operation of the grid must be changed. The Electric Power Research Institute champions the use of smart grid features such as power control devices employing advanced sensors to coordinate the grid.[9] Others advocate greater use of electronically controlled high-voltage direct current (HVDC) firebreaks to prevent disturbances from cascading across AC lines in a wide area grid.[10]

OPA model

In 2002, researchers at Oak Ridge National Laboratory (ORNL), Power System Engineering Research Center of the University of Wisconsin (PSerc),[11] and the University of Alaska Fairbanks proposed a mathematical model for the behavior of electrical distribution systems.[12][13] This model has become known as the OPA model, a reference to the names of the authors' institutions. OPA is a cascading failure model. Other cascading failure models include Manchester, Hidden failure, CASCADE, and Branching.[14] The OPA model was quantitatively compared with a complex networks model of a cascading failure – Crucitti–Latora–Marchiori (CLM) model,[15] showing that both models exhibit similar phase transitions in the average network damage (load shed/demand in OPA, path damage in CLM), with respect to transmission capacity.[16]

Mitigation of power outage frequency

The effects of trying to mitigate cascading failures near the critical point in an economically feasible fashion are often shown to not be beneficial and often even detrimental. Four mitigation methods have been tested using the OPA blackout model:[2]

  • Increase critical number of failures causing cascading blackouts – Shown to decrease the frequency of smaller blackouts but increase that of larger blackouts.
  • Increase individual power line max load – Shown to increase the frequency of smaller blackouts and decrease that of larger blackouts.
  • Combination of increasing critical number and max load of lines – Shown to have no significant effect on either size of blackout. The resulting minor reduction in the frequency of blackouts is projected to not be worth the cost of the implementation.
  • Increase the excess power available to the grid – Shown to decrease the frequency of smaller blackouts but increase that of larger blackouts.

In addition to the finding of each mitigation strategy having a cost-benefit relationship with regards to frequency of small and large blackouts, the total number of blackout events was not significantly reduced by any of the above-mentioned mitigation measures.[2]

A complex network-based model to control large cascading failures (blackouts) using local information only was proposed by A. E. Motter.[17]

In 2015, one of the solutions proposed to reduce the impact of power outage was introduced by M. S. Saleh.[9]

Key performance indicators

Utilities are measured on three specific performance measures:

See also

Major power outages

References

  1. ^ Petermann, Thomas; Bradke, Harald; Lüllmann, Arne; Poetzsch, Maik; Riehm, Ulrich (2011). What happens during a blackout – Consequences of a prolonged and wide-ranging power outage. Berlin: Office of Technology Assessment at the German Bundestag. doi:10.5445/IR/1000103292. ISBN 978-3-7322-9329-2.
  2. ^ a b c Carreras, B. A.; Lynch, V. E.; Newman, D. E.; Dobson, I. (2003). "Blackout Mitigation Assessment in Power Transmission Systems" (PDF). 36th Hawaii International Conference on System Sciences. Hawaii. Archived from the original (PDF) on April 1, 2011.
  3. ^ Kovaleski, Dave (October 15, 2018). "Senate Hearing Examines Electric Industry's Ability to Restore Power after System-wide Blackouts". Daily Energy Insider. Retrieved October 23, 2018.
  4. ^ Dobson, I.; Chen, J.; Thorp, J.; Carreras, B.; Newman, D. Examining Criticality of Blackouts in Power System Models with Cascading Events. 35th Annual Hawaii International Conference on System Sciences (HICSS'02), January 7–10, 2002. Big Island, Hawaii. Archived from the original on September 12, 2003. Retrieved August 17, 2003.
  5. ^ Carreras, B. A.; Lynch, V. E.; Dobson, I.; Newman, D. E. Dynamics, Criticality and Self-organization in a Model for Blackouts in Power Transmission Systems (PDF). Hawaii International Conference on Systems Sciences, January 2002, Hawaii. Archived from the original (PDF) on August 21, 2003.
  6. ^ a b Hoffmann, H.; Payton, D. W. (2014). "Suppressing cascades in a self-organized-critical model with non-contiguous spread of failures" (PDF). Chaos, Solitons and Fractals. 67: 87–93. Bibcode:2014CSF....67...87H. doi:10.1016/j.chaos.2014.06.011. Archived (PDF) from the original on March 4, 2016.
  7. ^ Carreras, B. A.; Newman, D. E.; Dobson, I.; Poole, A. B. (2000). Initial Evidence for Self-Organized Criticality in Electric Power System Blackouts (PDF). Proceedings of Hawaii International Conference on System Sciences, January 4–7, 2000, Maui, Hawaii. Archived from the original (PDF) on March 29, 2003. Retrieved August 17, 2003.
  8. ^ a b c d Dobson, Ian; Carreras, Benjamin A.; Lynch, Vickie E.; Newman, David E. (2007). "Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization". Chaos: An Interdisciplinary Journal of Nonlinear Science. 17 (2): 026103. Bibcode:2007Chaos..17b6103D. doi:10.1063/1.2737822. PMID 17614690.
  9. ^ a b Saleh, M. S.; Althaibani, A.; Esa, Y.; Mhandi, Y.; Mohamed, A. A. (October 2015). Impact of clustering microgrids on their stability and resilience during blackouts. 2015 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE). pp. 195–200. doi:10.1109/ICSGCE.2015.7454295. ISBN 978-1-4673-8732-3. S2CID 25664994.
  10. ^ Fairley, Peter (2004). "The Unruly Power Grid". IEEE Spectrum. 41 (8): 22–27. doi:10.1109/MSPEC.2004.1318179. S2CID 19389285. Retrieved June 24, 2012.
  11. ^ "Power Systems Engineering Research Center". Board of Regents of the University of Wisconsin System. 2014. Archived from the original on June 12, 2015. Retrieved June 23, 2015.
  12. ^ Carreras, B. A.; Lynch, V. E.; Dobson, I.; Newman, D. E. (2002). "Critical points and transitions in an electric power transmission model for cascading failure blackouts" (PDF). Chaos: An Interdisciplinary Journal of Nonlinear Science. 12 (4): 985–994. Bibcode:2002Chaos..12..985C. doi:10.1063/1.1505810. ISSN 1054-1500. PMID 12779622. Archived (PDF) from the original on March 5, 2016.
  13. ^ Dobson, I.; Carreras, B. A.; Lynch, V. E.; Newman, D. E. (2001). "An initial model for complex dynamics in electric power system blackouts". Proceedings of the 34th Annual Hawaii International Conference on System Sciences. p. 710. doi:10.1109/HICSS.2001.926274. ISBN 978-0-7695-0981-5. S2CID 7708994.
  14. ^ Nedic, Dusko P.; Dobson, Ian; Kirschen, Daniel S.; Carreras, Benjamin A.; Lynch, Vickie E. (2006). "Criticality in a cascading failure blackout model". International Journal of Electrical Power & Energy Systems. 28 (9): 627. CiteSeerX 10.1.1.375.2146. doi:10.1016/j.ijepes.2006.03.006.
  15. ^ Crucitti, P.; Latora, V.; Marchiori, M. (2004). "TModel for cascading failures in complex networks" (PDF). Physical Review E. 69 (4 Pt 2): 045104. arXiv:cond-mat/0309141. Bibcode:2004PhRvE..69d5104C. doi:10.1103/PhysRevE.69.045104. PMID 15169056. S2CID 3824371. Archived from the original (PDF) on April 24, 2017.
  16. ^ Cupac, V.; Lizier, J.T.; Prokopenko, M. (2013). "Comparing dynamics of cascading failures between network-centric and power flow models". International Journal of Electrical Power and Energy Systems. 49: 369–379. doi:10.1016/j.ijepes.2013.01.017.
  17. ^ Motter, Adilson E. (2004). "Cascade Control and Defense in Complex Networks". Physical Review Letters. 93 (9): 098701. arXiv:cond-mat/0401074. Bibcode:2004PhRvL..93i8701M. doi:10.1103/PhysRevLett.93.098701. PMID 15447153. S2CID 4856492.

External links

Read more information:

Bagian dari seri tentangGereja KatolikBasilika Santo Petrus, Kota Vatikan Ikhtisar Paus (Fransiskus) Hierarki Sejarah (Lini Masa) Teologi Liturgi Sakramen Maria Latar Belakang Yesus Penyaliban Kebangkitan Kenaikan Gereja Perdana Petrus Paulus Bapa-Bapa Gereja Sejarah Gereja Katolik Sejarah Lembaga Kepausan Konsili Ekumene Magisterium Empat Ciri Gereja Satu Gereja Sejati Suksesi Apostolik Organisasi Takhta Suci Kuria Romawi Dewan Kardinal Konsili Ekumene Lembaga Keuskupan Gereja Latin Gereja-Gere…

Telefónica S.A.JenisSociedad AnónimaKode emitenBMAD: TEFEuronext: TFANYSE: TEFLSE: TDEFWB: TNE5TYO: 9481Templat:BVLTemplat:BCBAIndustriTelekomunikasiPendahuluCompañía Telefónica Nacional de España (CTNE)Didirikan19 April 1924 (1924-04-19) (CTNE)KantorpusatMadrid, SpanyolWilayah operasiSeduniaTokohkunciCésar Alierta (Ketua dan CEO)ProdukJaringan tetap dan telepon genggam, layanan internet, televisi digitalPendapatan € 062,356 milyar (2012)[1]Laba operasi …

Country in Southern Africa This article is about the country. For the geographical area, see Southern Africa. For other uses, see South Africa (disambiguation). Republic of South Africa 10 other official names[1] Zulu:iRiphabhuliki yaseNingizimu AfrikaXhosa:iRiphabhlikhi yoMzantsi AfrikaAfrikaans:Republiek van Suid-AfrikaPedi:Repabliki ya Afrika-BorwaSouthern Sotho:Rephaboliki ya Afrika BorwaTswana:Rephaboliki ya Aforika BorwaTsonga:Riphabliki ya Afrika DzongaSwati:iRiphabhulikhi ya…

Ruijin, Provinsi Jiangxi, Republik Rakyat Tiongkok. Pembantaian Ruijin (Tionghoa sederhana: 瑞金大屠杀; Tionghoa tradisional: 瑞金大屠殺) adalah serangkaian pembantaian yang terjadi di Ruijin dan wilayah sekitarnya di provinsi Jiangxi pada masa Revolusi Kebudayaan Tiongkok.[1][2][3][4][5][6] Dari 23 September sampai awal Oktober 1968, lebih dari 1.000 orang tewas dalam Pembantaian Ruijin. Lebih dari 300 orang tewas di Kabupaten Ruijin, se…

Piala Dunia Antarklub FIFA 2025Informasi turnamenTuan rumah Amerika SerikatJadwalpenyelenggaraan15 Juni – 15 JuliJumlahtim peserta32← 2023 2029 → Piala Dunia Antarklub FIFA 2025 akan menjadi edisi ke-22 dari Piala Dunia Antarklub FIFA, sebuah turnamen antarklub sepak bola internasional yang diselenggarakan oleh FIFA. Turnamen edisi ini direncanakan akan diselenggarakan pada 15 Juni hingga 15 Juli 2025 dan akan menjadi yang pertama dengan format yang diperluas dengan 32 tim pes…

Sebuah konsep kerangka luar bertenaga yang dirancang untuk Inisiatif Prajurit Masa Depan 2030 . Adiprajurit (atau prajurit super ) adalah prajurit konsep yang mampu beroperasi melampaui kemampuan manusia normal melalui augmentasi teknologi, mulai dari kerangka luar bertenaga hingga rejimen pelatihan lanjutan atau (dalam penggambaran fiksi) modifikasi genetik atau augmentasi sibernetik. Ikhtisar dan sejarah sastra Adiprajurit biasa ditemukan dalam literatur fiksi ilmiah militer, film, dan video g…

Estanislao Figueras Presiden Republik Spanyol ke-1 Republik Spanyol Pertama ke-1 (1873–1874) Masa jabatan12 Februari 1873 – 11 Juni 1873 PendahuluAmadeo I selaku Raja SpanyolPenggantiFrancisco Pi y MargallPresiden Petahana Republik Katalunya ke-2Masa jabatan12 Februari 1873 – 11 Juni 1873 PendahuluPau Claris i Casademunt Tahun 1641 PenggantiFrancesc Macià i Llussà Tahun 1931 Presiden Kabinet Menteri Spanyol ke-63 Republik Spanyol Pertama ke-1 (1873–1874) Masa jabatan1…

Langit merah pada pagi hari, saat matahari terbit Langit merah pada malam hari, dengan debu dan awan bergerak menjauh ke barat Langit merah pada pagi hari adalah terjemahan bahasa Indonesia untuk Red sky at the morning, yaitu suatu frasa yang terdapat pada baris sajak kuno dalam bahasa Inggris sering diulang oleh para pelaut:[1] Red sky at night, sailors' delight. Red sky at morning, sailors take warning[2][3][4] Terjemahan bahasa Indonesia Langit merah waktu peta…

Chronologies Données clés 1591 1592 1593  1594  1595 1596 1597Décennies :1560 1570 1580  1590  1600 1610 1620Siècles :XIVe XVe  XVIe  XVIIe XVIIIeMillénaires :-Ier Ier  IIe  IIIe Chronologies thématiques Art Architecture, Arts plastiques (Dessin, Gravure, Peinture et Sculpture), Littérature et Musique classique   Ingénierie (), Architecture et ()   Politique Droit   Religion (,)   Science Santé et médecine  …

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен · …

International Ice Hockey FederationFédération Internationale de Hockey sur GlaceTanggal pendirian1908Kantor pusatZurich, SwissJumlah anggota 70 anggotaBahasa resmi InggrisPrancisPresidenRené FaselSitus webIIHF.com Federasi Hoki Es Internasional (Inggris: International Ice Hockey Federation; Prancis: Ligue Internationale de Hockey sur Glace) adalah induk organisasi internasional olahraga hoki es. Organisasi ini diakui oleh Komite Olimpiade Internasional (IOC). Organisasi ini bermarkas di Zuric…

Liga Champions UEFA 2021–2022Stade de France di Saint-Denis tuan rumah pertandingan final.Informasi turnamenJadwalpenyelenggaraanBabak kualifikasi:22 Juni – 25 Agustus 2021Kompetisi utama:14 September 2021 – 28 Mei 2022Jumlahtim pesertaKompetisi utama: 32Total: 80 (dari 54 asosiasi)Hasil turnamenJuara Real Madrid (gelar ke-14)Tempat kedua LiverpoolStatistik turnamenJumlahpertandingan125Jumlah gol380 (3,04 per pertandingan)Jumlahpenonton4.400.462 (35.204 per pertandingan)Pema…

العلاقات الأرجنتينية الفانواتية الأرجنتين فانواتو   الأرجنتين   فانواتو تعديل مصدري - تعديل   العلاقات الأرجنتينية الفانواتية هي العلاقات الثنائية التي تجمع بين الأرجنتين وفانواتو.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدو…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Section 8 comics – news · newspapers · books · scholar · JSTOR (August 2012) (Learn how and when to remove this template message) Section 8Panel from Hitman #18. From left to right: Defenestrator, Friendly Fire, Sixpack, Shakes, Jean de Baton-Baton, Dogwelder…

Partai Demokratik-Republik Democratic-Republican PartyKetua umum Thomas Jefferson James Madison James Monroe Dibentuk 13 Mei 1792; 231 tahun lalu (1792-05-13)[1]Dibubarkan1834Didahului olehPartai Anti-PemerintahanDiteruskan oleh Partai Demokrat Partai Nasional Republik Kantor pusatWashington, D.C. Partai Demokratik-Republik Amerika Serikat adalah partai politik yang pernah ada di Amerika Serikat yang dibentuk oleh Thomas Jefferson dan James Madison pada tahun 1791. Partai …

Anya GeraldineAnya di acara Shopee pada 2019LahirNur Amalina Hayati[1]15 Desember 1995 (umur 28)Jakarta, IndonesiaNama lainAnya GeraldineAlmamaterKalbis InstitutePekerjaanPemeranselebriti internetmodelpengusahaTahun aktif2016—sekarangTinggi177 cm (5 ft 10 in)[2] Nur Amalina Hayati, S.I.Kom. (lahir 15 Desember 1995), dikenal sebagai Anya Geraldine, adalah pemeran, selebriti internet, model, dan pengusaha Indonesia. Karier Anya di dunia hiburan dimul…

Second period of the Neoproterozoic Era, with major glaciation Cryogenianc. 720 – c. 635 Ma Pha. Proterozoic Archean Had. A map of the world as it appeared at the start of the Cryogenian, c. 720 MaChronology−720 —–−710 —–−700 —–−690 —–−680 —–−670 —–−660 —–−650 —–−640 —–−630&…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. SDN 011 BengkongInformasiJenisSekolah NegeriAlamatLokasiEngkong Sadai, Batam, Kepri,  IndonesiaMoto SDN 011 Bengkong, merupakan salah satu Sekolah Menengah Dasar Negeri yang ada di Provinsi Kepulauan Riau, yang beralamat di Engkong Sadai - Batam. Sa…

2012 2022 Élections législatives de 2017 dans la Nièvre 2 sièges de députés à l'Assemblée nationale 11 et 18 juin 2017 Type d’élection Élections législatives Campagne 22 mai au 10 juin12 juin au 16 juin Corps électoral et résultats Inscrits 159 297 Votants au 1er tour 80 732   50,68 %  7,9 Votes exprimés au 1er tour 78 467 Votes blancs au 1er tour 1 914 Votes nuls au 1er tour 651 Votants au 2d tour 71 921   45,22 % Votes …

State park in California, United States Montara State BeachShow map of CaliforniaShow map of the United StatesLocationSan Mateo County, CaliforniaNearest cityHalf Moon BayCoordinates37°32′53″N 122°30′49″W / 37.54806°N 122.51361°W / 37.54806; -122.51361Governing bodyCalifornia Department of Parks and Recreation Montara State Beach is a beach located in the coastal region of the U.S. state of California, eight miles north of Half Moon Bay on State Rout…

Kembali kehalaman sebelumnya