Share to: share facebook share twitter share wa share telegram print page

Rational number

The rational numbers are included in the real numbers , which are included in the complex numbers , while rationals include the integers , which in turn include the natural numbers .

In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q.[1] For example, is a rational number, as is every integer (e.g., ). The set of all rational numbers, also referred to as "the rationals",[2] the field of rationals[3] or the field of rational numbers is usually denoted by boldface Q, or blackboard bold

A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: 3/4 = 0.75), or eventually begins to repeat the same finite sequence of digits over and over (example: 9/44 = 0.20454545...).[4] This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see Repeating decimal § Extension to other bases).

A real number that is not rational is called irrational.[5] Irrational numbers include the square root of 2 (), π, e, and the golden ratio (φ). Since the set of rational numbers is countable, and the set of real numbers is uncountable, almost all real numbers are irrational.[1]

Rational numbers can be formally defined as equivalence classes of pairs of integers (p, q) with q ≠ 0, using the equivalence relation defined as follows:

The fraction then denotes the equivalence class of (p, q).[6]

Rational numbers together with addition and multiplication form a field which contains the integers, and is contained in any field containing the integers. In other words, the field of rational numbers is a prime field, and a field has characteristic zero if and only if it contains the rational numbers as a subfield. Finite extensions of are called algebraic number fields, and the algebraic closure of is the field of algebraic numbers.[7]

In mathematical analysis, the rational numbers form a dense subset of the real numbers. The real numbers can be constructed from the rational numbers by completion, using Cauchy sequences, Dedekind cuts, or infinite decimals (see Construction of the real numbers).

Terminology

The term rational in reference to the set refers to the fact that a rational number represents a ratio of two integers. In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational coefficients, although the term "polynomial over the rationals" is generally preferred, to avoid confusion between "rational expression" and "rational function" (a polynomial is a rational expression and defines a rational function, even if its coefficients are not rational numbers). However, a rational curve is not a curve defined over the rationals, but a curve which can be parameterized by rational functions.

Etymology

Although nowadays rational numbers are defined in terms of ratios, the term rational is not a derivation of ratio. On the contrary, it is ratio that is derived from rational: the first use of ratio with its modern meaning was attested in English about 1660,[8] while the use of rational for qualifying numbers appeared almost a century earlier, in 1570.[9] This meaning of rational came from the mathematical meaning of irrational, which was first used in 1551, and it was used in "translations of Euclid (following his peculiar use of ἄλογος)".[10][11]

This unusual history originated in the fact that ancient Greeks "avoided heresy by forbidding themselves from thinking of those [irrational] lengths as numbers".[12] So such lengths were irrational, in the sense of illogical, that is "not to be spoken about" (ἄλογος in Greek).[13]

Arithmetic

Irreducible fraction

Every rational number may be expressed in a unique way as an irreducible fraction where a and b are coprime integers and b > 0. This is often called the canonical form of the rational number.

Starting from a rational number its canonical form may be obtained by dividing a and b by their greatest common divisor, and, if b < 0, changing the sign of the resulting numerator and denominator.

Embedding of integers

Any integer n can be expressed as the rational number which is its canonical form as a rational number.

Equality

if and only if

If both fractions are in canonical form, then:

if and only if and [6]

Ordering

If both denominators are positive (particularly if both fractions are in canonical form):

if and only if

On the other hand, if either denominator is negative, then each fraction with a negative denominator must first be converted into an equivalent form with a positive denominator—by changing the signs of both its numerator and denominator.[6]

Addition

Two fractions are added as follows:

If both fractions are in canonical form, the result is in canonical form if and only if b, d are coprime integers.[6][14]

Subtraction

If both fractions are in canonical form, the result is in canonical form if and only if b, d are coprime integers.[14]

Multiplication

The rule for multiplication is:

where the result may be a reducible fraction—even if both original fractions are in canonical form.[6][14]

Inverse

Every rational number has an additive inverse, often called its opposite,

If is in canonical form, the same is true for its opposite.

A nonzero rational number has a multiplicative inverse, also called its reciprocal,

If is in canonical form, then the canonical form of its reciprocal is either or depending on the sign of a.

Division

If b, c, d are nonzero, the division rule is

Thus, dividing by is equivalent to multiplying by the reciprocal of [14]

Exponentiation to integer power

If n is a non-negative integer, then

The result is in canonical form if the same is true for In particular,

If a ≠ 0, then

If is in canonical form, the canonical form of the result is if a > 0 or n is even. Otherwise, the canonical form of the result is

Continued fraction representation

A finite continued fraction is an expression such as

where an are integers. Every rational number can be represented as a finite continued fraction, whose coefficients an can be determined by applying the Euclidean algorithm to (a, b).

Other representations

are different ways to represent the same rational value.

Formal construction

A diagram showing a representation of the equivalent classes of pairs of integers

The rational numbers may be built as equivalence classes of ordered pairs of integers.[6][14]

More precisely, let be the set of the pairs (m, n) of integers such n ≠ 0. An equivalence relation is defined on this set by

[6][14]

Addition and multiplication can be defined by the following rules:

[6]

This equivalence relation is a congruence relation, which means that it is compatible with the addition and multiplication defined above; the set of rational numbers is the defined as the quotient set by this equivalence relation, equipped with the addition and the multiplication induced by the above operations. (This construction can be carried out with any integral domain and produces its field of fractions.)[6]

The equivalence class of a pair (m, n) is denoted Two pairs (m1, n1) and (m2, n2) belong to the same equivalence class (that is are equivalent) if and only if

This means that

if and only if[6][14]

Every equivalence class may be represented by infinitely many pairs, since

Each equivalence class contains a unique canonical representative element. The canonical representative is the unique pair (m, n) in the equivalence class such that m and n are coprime, and n > 0. It is called the representation in lowest terms of the rational number.

The integers may be considered to be rational numbers identifying the integer n with the rational number

A total order may be defined on the rational numbers, that extends the natural order of the integers. One has

If

Properties

The set of all rational numbers, together with the addition and multiplication operations shown above, forms a field.[6]

has no field automorphism other than the identity. (A field automorphism must fix 0 and 1; as it must fix the sum and the difference of two fixed elements, it must fix every integer; as it must fix the quotient of two fixed elements, it must fix every rational number, and is thus the identity.)

is a prime field, which is a field that has no subfield other than itself.[15] The rationals are the smallest field with characteristic zero. Every field of characteristic zero contains a unique subfield isomorphic to

With the order defined above, is an ordered field[14] that has no subfield other than itself, and is the smallest ordered field, in the sense that every ordered field contains a unique subfield isomorphic to

is the field of fractions of the integers [16] The algebraic closure of i.e. the field of roots of rational polynomials, is the field of algebraic numbers.

The rationals are a densely ordered set: between any two rationals, there sits another one, and, therefore, infinitely many other ones.[6] For example, for any two fractions such that

(where are positive), we have

Any totally ordered set which is countable, dense (in the above sense), and has no least or greatest element is order isomorphic to the rational numbers.[17]

Countability

Illustration of the countability of the positive rationals

The set of all rational numbers is countable, as is illustrated in the figure to the right. As a rational number can be expressed as a ratio of two integers, it is possible to assign two integers to any point on a square lattice as in a Cartesian coordinate system, such that any grid point corresponds to a rational number. This method, however, exhibits a form of redundancy, as several different grid points will correspond to the same rational number; these are highlighted in red on the provided graphic. An obvious example can be seen in the line going diagonally towards the bottom right; such ratios will always equal 1, as any non-zero number divided by itself will always equal one.

It is possible to generate all of the rational numbers without such redundancies: examples include the Calkin–Wilf tree and Stern–Brocot tree.

As the set of all rational numbers is countable, and the set of all real numbers (as well as the set of irrational numbers) is uncountable, the set of rational numbers is a null set, that is, almost all real numbers are irrational, in the sense of Lebesgue measure.

Real numbers and topological properties

The rationals are a dense subset of the real numbers; every real number has rational numbers arbitrarily close to it.[6] A related property is that rational numbers are the only numbers with finite expansions as regular continued fractions.[18]

In the usual topology of the real numbers, the rationals are neither an open set nor a closed set.[19]

By virtue of their order, the rationals carry an order topology. The rational numbers, as a subspace of the real numbers, also carry a subspace topology. The rational numbers form a metric space by using the absolute difference metric and this yields a third topology on All three topologies coincide and turn the rationals into a topological field. The rational numbers are an important example of a space which is not locally compact. The rationals are characterized topologically as the unique countable metrizable space without isolated points. The space is also totally disconnected. The rational numbers do not form a complete metric space, and the real numbers are the completion of under the metric above.[14]

p-adic numbers

In addition to the absolute value metric mentioned above, there are other metrics which turn into a topological field:

Let p be a prime number and for any non-zero integer a, let where pn is the highest power of p dividing a.

In addition set For any rational number we set

Then

defines a metric on [20]

The metric space is not complete, and its completion is the p-adic number field Ostrowski's theorem states that any non-trivial absolute value on the rational numbers is equivalent to either the usual real absolute value or a p-adic absolute value.

See also

Number systems
Complex
Real
Rational
Integer
Natural
Zero: 0
One: 1
Prime numbers
Composite numbers
Negative integers
Fraction
Finite decimal
Dyadic (finite binary)
Repeating decimal
Irrational
Algebraic irrational
Transcendental
Imaginary

References

  1. ^ a b Rosen, Kenneth (2007). Discrete Mathematics and its Applications (6th ed.). New York, NY: McGraw-Hill. pp. 105, 158–160. ISBN 978-0-07-288008-3.
  2. ^ Lass, Harry (2009). Elements of Pure and Applied Mathematics (illustrated ed.). Courier Corporation. p. 382. ISBN 978-0-486-47186-0. Extract of page 382
  3. ^ Robinson, Julia (1996). The Collected Works of Julia Robinson. American Mathematical Soc. p. 104. ISBN 978-0-8218-0575-6. Extract of page 104
  4. ^ "Rational number". Encyclopedia Britannica. Retrieved 2020-08-11.
  5. ^ Weisstein, Eric W. "Rational Number". Wolfram MathWorld. Retrieved 2020-08-11.
  6. ^ a b c d e f g h i j k l m Biggs, Norman L. (2002). Discrete Mathematics. India: Oxford University Press. pp. 75–78. ISBN 978-0-19-871369-2.
  7. ^ Gilbert, Jimmie; Linda, Gilbert (2005). Elements of Modern Algebra (6th ed.). Belmont, CA: Thomson Brooks/Cole. pp. 243–244. ISBN 0-534-40264-X.
  8. ^ Oxford English Dictionary (2nd ed.). Oxford University Press. 1989. Entry ratio, n., sense 2.a.
  9. ^ Oxford English Dictionary (2nd ed.). Oxford University Press. 1989. Entry rational, a. (adv.) and n.1, sense 5.a.
  10. ^ Oxford English Dictionary (2nd ed.). Oxford University Press. 1989. Entry irrational, a. and n., sense 3.
  11. ^ Shor, Peter (2017-05-09). "Does rational come from ratio or ratio come from rational". Stack Exchange. Retrieved 2021-03-19.
  12. ^ Coolman, Robert (2016-01-29). "How a Mathematical Superstition Stultified Algebra for Over a Thousand Years". Retrieved 2021-03-20.
  13. ^ Kramer, Edna (1983). The Nature and Growth of Modern Mathematics. Princeton University Press. p. 28.
  14. ^ a b c d e f g h i "Fraction - Encyclopedia of Mathematics". encyclopediaofmath.org. Retrieved 2021-08-17.
  15. ^ Sūgakkai, Nihon (1993). Encyclopedic Dictionary of Mathematics, Volume 1. London, England: MIT Press. p. 578. ISBN 0-2625-9020-4.
  16. ^ Bourbaki, N. (2003). Algebra II: Chapters 4 - 7. Springer Science & Business Media. p. A.VII.5.
  17. ^ Giese, Martin; Schönegge, Arno (December 1995). Any two countable densely ordered sets without endpoints are isomorphic - a formal proof with KIV (PDF) (Technical report). Retrieved 17 August 2021.
  18. ^ Anthony Vazzana; David Garth (2015). Introduction to Number Theory (2nd, revised ed.). CRC Press. p. 1. ISBN 978-1-4987-1752-6. Extract of page 1
  19. ^ Richard A. Holmgren (2012). A First Course in Discrete Dynamical Systems (2nd, illustrated ed.). Springer Science & Business Media. p. 26. ISBN 978-1-4419-8732-7. Extract of page 26
  20. ^ Weisstein, Eric W. "p-adic Number". Wolfram MathWorld. Retrieved 2021-08-17.

Notes

External links

Read more information:

Peta kota Prešov Prešov (bahasa Jerman: Eperies / Preschau, bahasa Hungaria: Eperjes, Bahasa Rusyn: Пряшів) merupakan nama kota di Slowakia. Tepatnya di Region Prešov, Slowakia. Pada tahun 2005, kota ini memiliki jumlah penduduk sebanyak 91.621 jiwa dan, memiliki luas wilayah 70,40 km². Kota kembar Nyíregyháza, Hungaria Pittsburgh, Pennsylvania, AS Nowy Sącz, Polandia Mukacheve, Ukraina Praha 10, Ceko Remscheid, Jerman Keratsini, Yunani La Courneuve, Prancis Brugherio, Italia P…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada April 2017. Hiroshi HaizukaInformasi pribadiNama lengkap Hiroshi HaizukaTanggal lahir 23 September 1980 (umur 43)Tempat lahir Tokyo, JepangPosisi bermain BekKarier senior*Tahun Tim Tampil (Gol)2002 Mito HollyHock * Penampilan dan gol di klub senior hanya dihitung …

The Reverend Matthew HenryBiografiKelahiran18 Oktober 1662 Isycoed (en) Kematian22 Juni 1714 (51 tahun)Nantwich (en) Data pribadiAgamaGereja Presbiterian dan Calvinisme PendidikanGray's Inn (en) KegiatanPekerjaanTeolog, penulis dan pendeta KeluargaAnakKatherine Henry (en) Orang tuaPhilip Henry (en) , Katherine Henry (en) SaudaraSarah Savage (en) Matthew Henry (18 Oktober 1662 – 22 Juni 1714) adalah seorang pendeta Gereja Presbiterian asal Inggris. Ia terkenal karena karyanya berupa koment…

Oktovianus Mainmani Informasi pribadiNama lengkap Oktovianus MainmaniTanggal lahir 27 Oktober 1990 (umur 33)Tempat lahir Jayapura, Papua, IndonesiaTinggi 1,67 m (5 ft 5+1⁄2 in)Posisi bermain WingerInformasi klubKlub saat ini PSBS BIAKNomor 28Karier senior*Tahun Tim Tampil (Gol)2008–2009 PSMS Medan 24 (1)2009 (6 bulan) Persidafon Dafonsoro 7 (0)2010 (6 bulan) Persitara Jakarta Utara 13 (2)2010–2011 Sriwijaya 15 (3)2011–2012 Persiram Raja Ampat 19 (3)2013 Persiter T…

Raymond VIComte ToulousePasanganErmessende dari PeletBeatrice dari BéziersGiuvannaEleanor dari AragonAnakConstance dari ToulouseRaymond VII dari ToulouseKeluarga bangsawanWangsa RouergueBapakRaymond V dari ToulouseIbuConstance dari PrancisLahir27 Oktober 1156Saint-Gilles, GardMeninggal1 Agustus 1222 Raymond VI (27 Oktober 1156 – 2 Agustus 1222)[1] merupakan seorang Comte Toulouse dan Markis Provence dari tahun 1194 sampai 1222. Ia juga merupakan (sebagai Raymond IV) Comte Melgueil dar…

Cartagena de Indias 2006 XX Juegos Centroamericanos y del Caribe Localización Cartagena ColombiaParticipantes • Países • Deportistas 32 países4865[1]​Eventos 37 deportesCeremoniasApertura 14 de julio de 2006Clausura 30 de julio de 2006Inaugurado por Álvaro Uribe VélezLlama olímpica Sergio Núñez HenaoEstadio olímpico Estadio Pedro de HerediaCronología San Salvador 2002 Mayagüez 2010 [editar datos en Wikidata] Los XX Juegos Centroamerica…

Aecom beralih ke halaman ini. Untuk firma desain, lihat AECOM. Koordinat: 40°51′03″N 73°50′42″W / 40.850852°N 73.84494971°W / 40.850852; -73.84494971 Albert Einstein College of MedicineJenisSwasta, Non-nirlaba, NonsektarianDidirikan1955 DekanAllen M. Spiegel, M.D.Staf akademik2.770 purnawaktuJumlah mahasiswa724 M.D. 122 M.D./Ph.D. 256 Ph.D. 30 M.S.LokasiNew York, NY,  USAKampusPerkotaanNama julukanEinstein(sebelumnya AECOM)Situs webhttp://www.einstein.yu.…

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Aly & AJ – berita · surat kabar · buku · cendekiawan · JSTOR 78violetAlyson (kiri) dan AmandaAJ (kanan) Michalka, sedang bernyanyi di konser pada tahun 2007.Informasi latar belakangNama lainAly & AJ…

Ne doit pas être confondu avec Écriture musicale. Johann Sebastian Bach est l'archétype du musicien complet. Choriste jusqu'à la mue, claveciniste, organiste, violoniste, maître de chapelle. La quasi-totalité de ses œuvres est ancrée dans sa pratique instrumentale et répond aux nécessités de ses fonctions. Wolfgang Amadeus Mozart est considéré comme le premier compositeur indépendant, cherchant à libérer la composition musicale des exigences d'une fonction. Ludwig van Beethoven e…

Uni Eropa Artikel ini adalah bagian dari seri: Politik dan pemerintahanUni Eropa Parlemen Presiden Jerzy Buzek Kelompok terbesar; Joseph Daul: EPP Martin Schulz: S&D Sesi ke-7 AP (736) Periode 2009-14 Biro Wakil Presiden Quaestor Konferensi Prosedur legislatif Dewan Menteri Kepresidenan Polandia Konfigurasi Umum Luar Negeri Ekonomi Euro Prosedur legislatif Pemungutan suara Sekretariat Sekretaris Jenderal Uwe Corsepius COREPER Dewan Eropa Presiden Herman Van Rompuy Partai Daftar rapat Komisi …

Letak Bergstraße di Hessen Distrik Bergstraße merupakan sebuah distrik di Jerman. Distrik ini terletak di bagian tengah. Tepatnya di negara bagian Hessen. Pada tahun 2001, distrik ini memiliki jumlah penduduk sebesar 264.695 jiwa dan memiliki luas wilayah 719,54 km². Distrik ini memiliki angka kepadatan penduduk sebesar 368 jiwa/km². Kota dan kotamadya Kota Kotamadya Bensheim Bürstadt Heppenheim Hirschhorn Lampertheim Lindenfels Lorsch Neckarsteinach Viernheim Zwingenberg Abtsteinach B…

Lasiwen Pucuk-pisang Lasiwen pucuk-pisang (Myotis muricola)dari Jabranti, Karangkancana, Kuningan Status konservasi Risiko Rendah (IUCN 2.3) Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Mammalia Ordo: Chiroptera Famili: Vespertilionidae Genus: Myotis Spesies: M. muricola Nama binomial Myotis muricola(Gray, 1846) Subspesies Lihat teks Lasiwen pucuk-pisang atau lasiwen biasa (Myotis muricola) adalah sebuah spesies kelelawar anggota suku Vespertilionidae. Kelelawar pemakan…

Camille AndersonLahirCamille Constance Anderson12 Maret 1978 (umur 46)Dallas, Texas, Amerika SerikatAlmamaterUniversitas Texas di AustinPekerjaanAktris, model, pembawa acara televisi, agen real estate selebritis, dan pengusahaTahun aktif2000–sekarangAnak1Situs webwww.camilleanderson.com Camille Constance Anderson (lahir 12 Maret 1978) adalah seorang aktris, model, dan pembawa acara televisi asal Amerika Serikat.[1] Dia lahir pada tanggal 12 Maret 1978 di Dallas, Texas, Amerik…

Esempio di cordone litorale, Airdrie, Canada Un cordone litorale è una formazione costiera formata dall'azione di trasporto di materiali da parte dei grandi fiumi e dalle correnti della deriva litoranea, che originano depositi che sostituiscono ai contorni della costa, formando una sorta di argine naturale. Un costone è tipicamente costituito da materiali quali sabbia o ciottoli; spesso la formazione ha un andamento ricurvo, soprattutto in prossimità dell'apice, caratteristica probabilmente d…

A Song Flung Up to Heaven Versi paperbackPengarangMaya AngelouNegaraUnited StatesBahasaEnglishGenreAutobiografiDiterbitkan2002 (Random House)ISBNISBN 0-375-50747-7Didahului olehAll God's Children Need Traveling Shoes Diikuti olehMom & Me & Mom  A Song Flung Up to Heaven adalah buku keenam dalam serial autobiografi karya penulis dan penyair berkebangsaan Amerika Serikat, Maya Angelou. Berlatar waktu 1965 sampai dengan1968, buku ini diawali seperti bagian akhir buku Ang…

Louis Joseph Maria BeelBiografiKelahiran12 April 1902 Roermond Kematian11 Februari 1977 (74 tahun)Utrecht, Utrecht Penyebab kematianLeukemia Tempat pemakamanWassenaar   Perdana Menteri Belanda 22 Desember 1958 – 19 Mei 1959 ← Willem Drees – Jan de Quay (en) →   Anggota Dewan Perwakilan Rakyat Belanda 27 Juli 1948 – 7 September 1948   Penguasa Hindia-Belanda 1948 – Mei 1949 ← Hubertus Johannes van…

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2020) إيبر بيكر (بالإنجليزية: Eber Baker)‏    معلومات شخصية تاريخ الميلاد سنة 1780  تاريخ الوفاة سنة 1864 (83–84 سنة)  مواطنة الولايات المتحدة  الحياة العملية ال…

Carl Jonas Love AlmqvistNama dalam bahasa asli(sv) Carl Jonas Love Almqvist BiografiKelahiran28 November 1793 Adolf Fredriks parish (en) Kematian26 September 1866 (72 tahun)Bremen Tempat pemakamanSolna cemetery (en), SO 01 2 59°21′11″N 18°01′31″E / 59.35294°N 18.02518°E / 59.35294; 18.02518 Data pribadiAgamaGereja Lutheran PendidikanUniversitas Uppsala (1808–1815) KegiatanPekerjaanPenulis, komponis, penyair, wartawan, novelis, school teacher (en), penuli…

العلاقات التشيكية الجنوب سودانية التشيك جنوب السودان   التشيك   جنوب السودان تعديل مصدري - تعديل   العلاقات التشيكية الجنوب سودانية هي العلاقات الثنائية التي تجمع بين التشيك وجنوب السودان.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعي…

Hindu yogi and saint GorakhnathStatue of Gorakhnath performing yogic meditation in lotus position at Laxmangarh temple, IndiaPersonalReligionHinduismSectNath Sampradaya (sect of Shaivism)Known forHatha yoga,[1][2] Nath Yogi organisation, Guru, GorakhpurFounder ofNath monasteries and templesPhilosophyHatha yogaReligious careerGuruMatsyendranathHonorsMahayogi Gorakhnath (also known as Goraksanath (Sanskrit: Gorakṣanātha),[3] c. early 11th century) was a Hindu y…

Kembali kehalaman sebelumnya