These polytopes are part of a family of 527 uniform 10-polytopes with A10 symmetry.
There are unique 5 degrees of rectifications including the zeroth, the 10-simplex itself. Vertices of the rectified 10-simplex are located at the edge-centers of the 10-simplex. Vertices of the birectified 10-simplex are located in the triangular face centers of the 10-simplex. Vertices of the trirectified 10-simplex are located in the tetrahedral cell centers of the 10-simplex. Vertices of the quadrirectified 10-simplex are located in the 5-cell centers of the 10-simplex.
The Cartesian coordinates of the vertices of the rectified 10-simplex can be most simply positioned in 11-space as permutations of (0,0,0,0,0,0,0,0,0,1,1). This construction is based on facets of the rectified 11-orthoplex.
The Cartesian coordinates of the vertices of the birectified 10-simplex can be most simply positioned in 11-space as permutations of (0,0,0,0,0,0,0,0,1,1,1). This construction is based on facets of the birectified 11-orthoplex.
The Cartesian coordinates of the vertices of the trirectified 10-simplex can be most simply positioned in 11-space as permutations of (0,0,0,0,0,0,0,1,1,1,1). This construction is based on facets of the trirectified 11-orthoplex.
The Cartesian coordinates of the vertices of the quadrirectified 10-simplex can be most simply positioned in 11-space as permutations of (0,0,0,0,0,0,1,1,1,1,1). This construction is based on facets of the quadrirectified 11-orthoplex.
H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6[1]
(Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]