There are 9 rectifications of the 9-orthoplex. Vertices of the rectified 9-orthoplex are located at the edge-centers of the 9-orthoplex. Vertices of the birectified 9-orthoplex are located in the triangular face centers of the 9-orthoplex. Vertices of the trirectified 9-orthoplex are located in the tetrahedral cell centers of the 9-orthoplex.
These polytopes are part of a family 511 uniform 9-polytopes with BC9 symmetry.
There are two Coxeter groups associated with the rectified 9-orthoplex, one with the C9 or [4,37] Coxeter group, and a lower symmetry with two copies of 8-orthoplex facets, alternating, with the D9 or [36,1,1] Coxeter group.
Cartesian coordinates
Cartesian coordinates for the vertices of a rectified 9-orthoplex, centered at the origin, edge length are all permutations of:
(±1,±1,0,0,0,0,0,0,0)
Root vectors
Its 144 vertices represent the root vectors of the simple Lie group D9. The vertices can be seen in 3 hyperplanes, with the 36 vertices rectified 8-simplexs cells on opposite sides, and 72 vertices of an expanded 8-simplex passing through the center. When combined with the 18 vertices of the 9-orthoplex, these vertices represent the 162 root vectors of the B9 and C9 simple Lie groups.
H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6[1]
(Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]