Share to: share facebook share twitter share wa share telegram print page

Row and column vectors

In linear algebra, a column vector with elements is an matrix[1] consisting of a single column of entries, for example,

Similarly, a row vector is a matrix for some , consisting of a single row of entries, (Throughout this article, boldface is used for both row and column vectors.)

The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: and

The set of all row vectors with n entries in a given field (such as the real numbers) forms an n-dimensional vector space; similarly, the set of all column vectors with m entries forms an m-dimensional vector space.

The space of row vectors with n entries can be regarded as the dual space of the space of column vectors with n entries, since any linear functional on the space of column vectors can be represented as the left-multiplication of a unique row vector.

Notation

To simplify writing column vectors in-line with other text, sometimes they are written as row vectors with the transpose operation applied to them.

or

Some authors also use the convention of writing both column vectors and row vectors as rows, but separating row vector elements with commas and column vector elements with semicolons (see alternative notation 2 in the table below).[citation needed]

Row vector Column vector
Standard matrix notation
(array spaces, no commas, transpose signs)
Alternative notation 1
(commas, transpose signs)
Alternative notation 2
(commas and semicolons, no transpose signs)

Operations

Matrix multiplication involves the action of multiplying each row vector of one matrix by each column vector of another matrix.

The dot product of two column vectors a, b, considered as elements of a coordinate space, is equal to the matrix product of the transpose of a with b,

By the symmetry of the dot product, the dot product of two column vectors a, b is also equal to the matrix product of the transpose of b with a,

The matrix product of a column and a row vector gives the outer product of two vectors a, b, an example of the more general tensor product. The matrix product of the column vector representation of a and the row vector representation of b gives the components of their dyadic product,

which is the transpose of the matrix product of the column vector representation of b and the row vector representation of a,

Matrix transformations

An n × n matrix M can represent a linear map and act on row and column vectors as the linear map's transformation matrix. For a row vector v, the product vM is another row vector p:

Another n × n matrix Q can act on p,

Then one can write t = pQ = vMQ, so the matrix product transformation MQ maps v directly to t. Continuing with row vectors, matrix transformations further reconfiguring n-space can be applied to the right of previous outputs.

When a column vector is transformed to another column vector under an n × n matrix action, the operation occurs to the left,

leading to the algebraic expression QM vT for the composed output from vT input. The matrix transformations mount up to the left in this use of a column vector for input to matrix transformation.

See also

Notes

  1. ^ Artin, Michael (1991). Algebra. Englewood Cliffs, NJ: Prentice-Hall. p. 2. ISBN 0-13-004763-5.

References

  • Axler, Sheldon Jay (1997), Linear Algebra Done Right (2nd ed.), Springer-Verlag, ISBN 0-387-98259-0
  • Lay, David C. (August 22, 2005), Linear Algebra and Its Applications (3rd ed.), Addison Wesley, ISBN 978-0-321-28713-7
  • Meyer, Carl D. (February 15, 2001), Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), ISBN 978-0-89871-454-8, archived from the original on March 1, 2001
  • Poole, David (2006), Linear Algebra: A Modern Introduction (2nd ed.), Brooks/Cole, ISBN 0-534-99845-3
  • Anton, Howard (2005), Elementary Linear Algebra (Applications Version) (9th ed.), Wiley International
  • Leon, Steven J. (2006), Linear Algebra With Applications (7th ed.), Pearson Prentice Hall

Read other articles:

2019 American film by John Crowley The GoldfinchTheatrical release posterDirected byJohn CrowleyScreenplay byPeter StraughanBased onThe Goldfinchby Donna TarttProduced by Nina Jacobson Brad Simpson Starring Ansel Elgort Oakes Fegley Aneurin Barnard Finn Wolfhard Sarah Paulson Luke Wilson Jeffrey Wright Nicole Kidman CinematographyRoger DeakinsEdited byKelley DixonMusic byTrevor GureckisProductioncompanies Amazon Studios[1] Color Force[1] Distributed byWarner Bros. Pictures[1&…

Kereta api Fajar dan Senja Utama SoloKereta api Senja Utama Solo yang mengalami keterlambatan saat foto ini diambil dikarenakan adanya jembatan yang roboh di petak Bumiayu-LinggapuraInformasi umumJenis layananKereta api antarkotaStatusBeroperasiMulai beroperasi14 Oktober 1978Operator saat iniPT Kereta Api IndonesiaLintas pelayananStasiun awalSolo BalapanStasiun akhirPasar SenenJarak tempuh570 kmWaktu tempuh rerata7 jam 52 menit[1]Frekuensi perjalananSatu kali keberangkatan tiap hari deng…

Defriman Djafri Dekan Fakultas Kesehatan MasyarakatUniversitas AndalasPetahanaMulai menjabat 29 Juni 2016[1] PendahuluMasrulPenggantiPetahana Informasi pribadiLahir5 Agustus 1980 (umur 43)Padang, Sumatera BaratKebangsaanIndonesiaAlma materUniversitas IndonesiaUniversitas Pangeran SongklaPekerjaanPenelitiDikenal karenaAhli epidemiologiSunting kotak info • L • B Defriman Djafri, S.K.M., M.K.M., Ph.D (lahir 5 Agustus 1980) adalah seorang ahli epidemiologi Indonesia da…

Chevrolet Seri Task Force1956 Chevrolet Task ForceInformasiProdusenChevrolet (General Motors)Juga disebutApache Cameo Carrier Suburban Viking (medium-duty) Spartan (heavy-duty) GMC Seri Blue ChipMasa produksi1955–1961Perakitan(cabang)Flint Truck Assembly, (Flint, Michigan, AS)(branch assembly)Van Nuys Assembly (Van Nuys, California, AS)St. Louis Truck Assembly (Saint Louis, Missouri, AS)Pontiac West Assembly (Pontiac, Michigan, AS)Oshawa Truck Assembly (original location) (Oshawa, Ontario…

نظرية الأوتار نظرية الأوتار الفائقة نظرية نظرية الأوتار أوتار فائقة نظرية الأوتار البوزونيةنظرية-إم (تبسيط) وتر النوع الأول · وتر النوع الثاني وتر هيتيروتي نظرية الحقل الوتري مبدأ هولوغرافي مفاهيم أوتار · برينات متعدد شعب كلابي ياوجبر كاك مودي برين-دي زمرة لي إي8 مواضيع متع…

Department of Haiti This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sud department – news · newspapers · books · scholar · JSTOR (September 2014) (Learn how and when to remove this template message) Department in Les Cayes, HaitiSud SidDepartmentPort SalutSud in HaitiCountryHaitiCapitalLes CayesRegionThe T…

Series of proposed emergency spacecraft for the Apollo Program This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Lunar escape systems – news · newspapers · books · scholar · JSTOR (November 2020) (Learn how and when to remove this template message) Concept of LESS Lunar escape systems (LESS) were a series of emer…

Cari artikel bahasa  Cari berdasarkan kode ISO 639 (Uji coba)  Kolom pencarian ini hanya didukung oleh beberapa antarmuka Halaman bahasa acak Bahasa ChadWilayahsepanjang utara Nigeria, selatan Niger, selatan Chad, Republik Afrika Tengah dan utara KamerunPenutur Rumpun bahasaAfro-asia Chad Kode bahasaISO 639-3–QIDQ33184  Portal Bahasa Sunting kotak info • L • B • PWBantuan penggunaan templat ini Keterkaitan antar-cabang dari rumpun bahasa Afro-Asia (Lipiński…

Book by Claudius Ptolemaeus Tetrabiblos (Quadripartitum) Opening page of Tetrabiblos: 15th-century Latin printed edition of the 12th-century translation of Plato of Tivoli; published in Venice by Erhard Ratdolt, 1484.AuthorClaudius PtolemyOriginal titleApotelesmatikaLanguageGreekSubjectAstrologyPublication date2nd century Quadripartitum, 1622 Tetrabiblos (Greek: Τετράβιβλος, lit. 'Four books'), also known as Apotelesmatiká (Greek: Ἀποτελεσματικά, lit.…

Oppidum de Moulay Localisation Pays France Commune Moulay Département Mayenne Protection  Inscrit MH (1986) Coordonnées 48° 16′ 19″ nord, 0° 37′ 37″ ouest Géolocalisation sur la carte : France Oppidum de MoulayOppidum de Moulay modifier  L'oppidum de Moulay ou oppidum du Mesnil[1] est un oppidum situé sur la commune de Moulay, département de la Mayenne, région Pays de la Loire. Des fouilles ont eu lieu sur le site entre 1972 et 1975, a…

Tupolev ANT-8 ANT-8 adalah sebuah perahu terbang eksperimental sayap tinggi (high wing) yang dirancang oleh Tupolev. Itu ditunjuk MDR-2 (MDR berarti Morskoi Dalnii Razvedchik, atau Naval Long-Range Reconnaissance) oleh militer. Tupolev dan TsAGI diminta untuk membangunnya pada tahun 1925, tetapi proyek lain yang dianggap lebih penting. Dengan demikian, hanya sedikit yang diselesaikan pada ANT-8. Penerbangan pertama adalah pada tanggal 30 Januari 1931, dikemudikan oleh S. Riballschuk. Penting unt…

Fútbol Club JuárezDatos generalesNombre Fútbol Club Juárez[1]​Apodo(s) Bravos[2]​Fundación 29 de mayo de 2015 (8 años)Propietario(s) Alejandra de la VegaPresidente Luis RodríguezEntrenador Maurício BarbieriInstalacionesEstadio Olímpico Benito JuárezUbicación Ciudad Juárez, ChihuahuaCapacidad 19 703 espectadoresInauguración 12 de mayo de 1981 (42 años)Uniforme Titular Alternativo              …

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёрые …

Jarrod Bowen Bowen bermain untuk West Ham United pada 2023Informasi pribadiNama lengkap Jarrod BowenTanggal lahir 20 Desember 1996 (umur 27)Tempat lahir Leominster, InggrisTinggi 175 cm (5 ft 9 in)[1]Posisi bermain Gelandang sayap kanan, penyerangInformasi klubKlub saat ini West Ham UnitedNomor 20Karier junior Leominster Minors0000–2014 Hereford UnitedKarier senior*Tahun Tim Tampil (Gol)2014 Hereford United 8 (1)2014–2020 Hull City 124 (52)2020– West Ham United …

My Lucky Day Le groupe DoReDoS interprétant My Lucky Day lors d'une répétition avant la deuxième demi-finale de l'Eurovision 2018. Chanson de DoReDoS au Concours Eurovision de la chanson 2018 Sortie 23 mars 2018 Durée 3:03 Langue Anglais Genre Pop Auteur John Ballard Compositeur Philipp Kirkorov Chansons représentant la Moldavie au Concours Eurovision de la chanson Hey Mamma!(2017) Stay(2019)modifier My Lucky Day (« Mon jour de chance ») est une chanson interprétée par l…

Ken GhoshLahir19 Agustus 1966 (umur 57)MumbaiPekerjaanSutradara, Penulis Ken Ghosh adalah seorang sutradara dan penulis naskah Hindi India. Ia juga memproduksi film dan serial TV.[1] Ia adalah alumnus The Bishop's School. Filmografi Sutradara Tahun Film Produser Catatan 2003 Ishq Vishk Kumar S. Taurani Ramesh S. Taurani 2004 Fida Kumar S. Taurani Ramesh S. Taurani 2010 Chance Pe Dance Ronnie Screwvala 2018 XXX Referensi ^ Ken Ghosh di IMDb (dalam bahasa Inggris) Wikimedia Commons me…

Untuk kegunaan lain, lihat Hamengkubuwana (disambiguasi).Sultan YogyakartaHamengku Buwana X (1989) Hamengku Bawana Ka-10 (2015)Lambang kerajaanSedang berkuasaHamengku Buwana Xsejak 7 Maret 1989Sultan Yogyakarta PerincianSapaan resmiBagindaPewaris sementaraGusti Kanjeng Ratu Mangkubumi Hamemayu Hayuning Bawana Langgeng Ing MataramPenguasa pertamaSultan Hamengkubuwana IPembentukan1755 - Sekarang [1]KediamanKaraton Ngayogyakarta HadiningratPenunjukHereditasHamengkubuwana adalah sebuah …

Locked Out of HeavenSingel oleh Bruno Marsdari album Unorthodox JukeboxDirilis01 Oktober 2012 (2012-10-01)Direkam Levcon (Los Angeles, California) Daptone (Brooklyn, New York) Avatar (New York City) Genre Reggae rock pop rock Durasi3:53LabelAtlanticPencipta Bruno Mars Philip Lawrence Ari Levine Produser The Smeezingtons Mark Ronson Jeff Bhasker Emile Haynie Kronologi singel Bruno Mars Count On Me (2011) Locked Out of Heaven (2012) When I Was Your Man (2013) Video musikLocked Out of Heaven d…

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、蘭&…

Administrative entry restrictions A Panamanian passport Visa requirements for Panamanian citizens are administrative entry restrictions by the authorities of other states placed on citizens of Panama. As of April 2024, Panamanian citizens had visa-free or visa on arrival access to 149 countries and territories, ranking the Panamanian passport 30th in terms of travel freedom according to the Henley Passport Index.[1] Visa requirements map Visa requirements for Panamanian citizens …

Kembali kehalaman sebelumnya