There are eleven unique runcinations of the 8-simplex, including permutations of truncation and cantellation. The triruncinated 8-simplex and triruncicantitruncated 8-simplex have a doubled symmetry, showing [18] order reflectional symmetry in the A8Coxeter plane.
Small prismated enneazetton (Acronym: spene) (Jonathan Bowers)[1]
Coordinates
The Cartesian coordinates of the vertices of the runcinated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,1,2). This construction is based on facets of the runcinated 9-orthoplex.
Small biprismated enneazetton (Acronym: sabpene) (Jonathan Bowers)[2]
Coordinates
The Cartesian coordinates of the vertices of the biruncinated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,1,1,2,2). This construction is based on facets of the biruncinated 9-orthoplex.
Small triprismated enneazetton (Acronym: satpeb) (Jonathan Bowers)[3]
Coordinates
The Cartesian coordinates of the vertices of the triruncinated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,1,1,1,2,2,2). This construction is based on facets of the triruncinated 9-orthoplex.
H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6[1]
(Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]