Hakimi, S. L. (1963), "On realizability of a set of integers as degrees of the vertices of a linear graph. II. Uniqueness", J. Soc. Indust. Appl. Math., 11 (1): 135–147, doi:10.1137/0111010, JSTOR2098770, MR0153001.
Hakimi, S. L. (1964), "Optimum locations of switching centers and the absolute centers and medians of a graph", Operations Research, 12 (3): 450–459, doi:10.1287/opre.12.3.450.
Hakimi, S. L. (1971), "Steiner's problem in graphs and its implications", Networks, 1 (2): 113–133, doi:10.1002/net.3230010203, MR0295947.
^Allenby, R.B.J.T.; Slomson, Alan (2011), "Theorem 9.3: the Havel–Hakimi theorem", How to Count: An Introduction to Combinatorics, Discrete Mathematics and Its Applications (2nd ed.), CRC Press, p. 159, ISBN9781420082616, archived from the original on 2014-01-01, retrieved 2016-04-28, A proof of this theorem was first published by Václav Havel ... in 1963 another proof was published independently by S. L. Hakimi.
^Hwang, F. K.; Richards, D. S.; Winter, P. (1992), The Steiner Tree Problem, Annals of Discrete Mathematics, Elsevier, p. 94, ISBN9780080867939, archived from the original on 2014-01-01, retrieved 2016-04-28, The Steiner tree problem in networks was originally formulated by Hakimi and independently by Levin in 1971.
^Marianov, Vladimir; Serra, Daniel (2011), "Median problems in networks", in Eiselt, Horst A.; Marianov, Vladimir (eds.), Foundations of Location Analysis, International series in operations research & management science, vol. 155, Springer, pp. 39–59, doi:10.1007/978-1-4419-7572-0_3, hdl:10230/4796, ISBN9781441975720. On p. 53Archived 2014-01-01 at the Wayback Machine, Marianov and Serra write "The impact of Hakimi's two contributions is hard to overstate. A common opinion among location researchers is that the paper by Hakimi (1964) strongly contributed to trigger the interest in location theory and analysis, and started a long string of related publications that does not seem to be decreasing."