Share to: share facebook share twitter share wa share telegram print page

Set packing

Set packing is a classical NP-complete problem in computational complexity theory and combinatorics, and was one of Karp's 21 NP-complete problems. Suppose one has a finite set S and a list of subsets of S. Then, the set packing problem asks if some k subsets in the list are pairwise disjoint (in other words, no two of them share an element).

More formally, given a universe and a family of subsets of , a packing is a subfamily of sets such that all sets in are pairwise disjoint. The size of the packing is . In the set packing decision problem, the input is a pair and an integer ; the question is whether there is a set packing of size or more. In the set packing optimization problem, the input is a pair , and the task is to find a set packing that uses the most sets.

The problem is clearly in NP since, given subsets, we can easily verify that they are pairwise disjoint in polynomial time.

The optimization version of the problem, maximum set packing, asks for the maximum number of pairwise disjoint sets in the list. It is a maximization problem that can be formulated naturally as an integer linear program, belonging to the class of packing problems.

Integer linear program formulation

The maximum set packing problem can be formulated as the following integer linear program.

maximize (maximize the total number of subsets)
subject to for all (selected sets have to be pairwise disjoint)
for all . (every set is either in the set packing or not)

Complexity

The set packing problem is not only NP-complete, but its optimization version (general maximum set packing problem) has been proven as difficult to approximate as the maximum clique problem; in particular, it cannot be approximated within any constant factor.[1] The best known algorithm approximates it within a factor of .[2] The weighted variant can also be approximated as well.[3]

Packing sets with a bounded size

The problem does have a variant which is more tractable. Given any positive integer k≥3, the k-set packing problem is a variant of set packing in which each set contains at most k elements.

When k=1, the problem is trivial. When k=2, the problem is equivalent to finding a maximum cardinality matching, which can be solved in polynomial time.

For any k≥3, the problem is NP-hard, as it is more general than 3-dimensional matching. However, there are constant-factor approximation algorithms:

  • Cygan[4] presented an algorithm that, for any ε>0, attains a (k+1+ε)/3 approximation. The run-time is polynomial in the number of sets and elements, but doubly-exponential in 1/ε.
  • Furer and Yu[5] presented an algorithm that attains the same approximation, but with run-time singly-exponential in 1/ε.

Packing sets with a bounded degree

In another more tractable variant, if no element occurs in more than d of the subsets, the answer can be approximated within a factor of d. This is also true for the weighted version.

Equivalent problems

Hypergraph matching is equivalent to set packing: the sets correspond to the hyperedges.

The independent set problem is also equivalent to set packing – there is a one-to-one polynomial-time reduction between them:

  • Given a set packing problem on a collection , build a graph where for each set there is a vertex , and there is an edge between and iff . Every independent set of vertices in the generated graph corresponds to a set packing in .
  • Given an independent vertex set problem on a graph , build a collection of sets where for each vertex there is a set containing all edges adjacent to . Every set packing in the generated collection corresponds to an independent vertex set in .

This is also a bidirectional PTAS reduction, and it shows that the two problems are equally difficult to approximate.

In the special case when each set contains at most k elements (the k-set packing problem), the intersection graph is (k+1)-claw-free. This is because, if a set intersects some k+1 sets, then at least two of these sets intersect, so there cannot be a (k+1)-claw. So Maximum Independent Set in claw-free graphs[6] can be seen as a generalization of Maximum k-Set Packing.

Special cases

Graph matching is a special case of set packing in which the size of all sets is 2 (the sets correspond to the edges). In this special case, a maximum-size matching can be found in polynomial time.

3-dimensional matching is a special case in which the size of all sets is 3, and in addition, the elements are partitioned into 3 colors and each set contains exactly one element of each color. This special case is still NP-hard, though it has better constant-factor approximation algorithms than the general case.

In the set cover problem, we are given a family of subsets of a universe , and the goal is to determine whether we can choose t sets that together contain every element of . These sets may overlap. The optimization version finds the minimum number of such sets. The maximum set packing need not cover every possible element.

In the exact cover problem, every element of should be contained in exactly one of the subsets. Finding such an exact cover is an NP-complete problem, even in the special case in which the size of all sets is 3 (this special case is called exact 3 cover or X3C). However, if we create a singleton set for each element of S and add these to the list, the resulting problem is about as easy as set packing.

Karp originally showed set packing NP-complete via a reduction from the clique problem.

Notes

  1. ^ Hazan, Elad; Safra, Shmuel; Schwartz, Oded (2006), "On the complexity of approximating k-set packing", Computational Complexity, 15 (1): 20–39, CiteSeerX 10.1.1.352.5754, doi:10.1007/s00037-006-0205-6, MR 2226068, S2CID 1858087. See in particular p. 21: "Maximum clique (and therefore also maximum independent set and maximum set packing) cannot be approximated to within unless NP ⊂ ZPP."
  2. ^ Halldórsson, Magnus M.; Kratochvíl, Jan; Telle, Jan Arne (1998). Independent sets with domination constraints. 25th International Colloquium on Automata, Languages and Programming. Lecture Notes in Computer Science. Vol. 1443. Springer-Verlag. pp. 176–185.
  3. ^ Halldórsson, Magnus M. (1999). Approximations of weighted independent set and hereditary subset problems. 5th Annual International Conference on Computing and Combinatorics. Lecture Notes in Computer Science. Vol. 1627. Springer-Verlag. pp. 261–270.
  4. ^ Cygan, Marek (October 2013). "Improved Approximation for 3-Dimensional Matching via Bounded Pathwidth Local Search". 2013 IEEE 54th Annual Symposium on Foundations of Computer Science. pp. 509–518. arXiv:1304.1424. doi:10.1109/FOCS.2013.61. ISBN 978-0-7695-5135-7. S2CID 14160646.
  5. ^ Fürer, Martin; Yu, Huiwen (2014). "Approximating the k-set packing problem by local improvements". In Fouilhoux, Pierre; Gouveia, Luis Eduardo Neves; Mahjoub, A. Ridha; Paschos, Vangelis T. (eds.). Combinatorial Optimization. Lecture Notes in Computer Science. Vol. 8596. Cham: Springer International Publishing. pp. 408–420. doi:10.1007/978-3-319-09174-7_35. ISBN 978-3-319-09174-7. S2CID 15815885.
  6. ^ Neuwohner, Meike (2021). "An improved approximation algorithm for the maximum weight independent set problem in d-claw free graphs". In Bläser, Markus; Monmege, Benjamin (eds.). 38th International Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16–19, 2021, Saarbrücken, Germany (Virtual Conference). LIPIcs. Vol. 187. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. pp. 53:1–53:20. arXiv:2106.03545. doi:10.4230/LIPICS.STACS.2021.53.

References

Read other articles:

Formasi testudo dalam adegan ulang militer Romawi. Dalam peperangan Romawi Kuno, testudo atau formasi kura-kura adalah sebuah sebuah formasi yang umum digunakan oleh para Legiun Romawi pada saat pertempuran, terutama pengepungan. Testudo adalah kata Latin untuk kura-kura. Istilah Yunani untuk formasi tersebut adalah chelone dan pada era Bizantium, formasi tersebut tampak dilibatkan pada panduan militer era tersebut dan disebut foulkon. Referensi Dio Cassius, Roman History Book 49, 30, ed. Loeb C…

Kolkata Municipal Corporation in West Bengal, IndiaWard No. 58Kolkata Municipal CorporationInteractive Map Outlining Ward No. 58Ward No. 58Location in KolkataCoordinates (dms): 22°32′36″N 88°23′50″E / 22.543333°N 88.39725°E / 22.543333; 88.39725Country IndiaStateWest BengalCityKolkataNeighbourhoodsTangra (Seal Lane), Dhapa (Mathpukur), East Kolkata Wetlands (Arupota-Bosetala-Boinchtala-Durgapur-Anandabad-Khanaberia)ReservationSCParliamentary constitue…

Voce principale: Unione Sportiva Sambenedettese 1923. SS SambenedetteseStagione 1973-1974 Sport calcio Squadra Sambenedettese Allenatore Marino Bergamasco Presidente Nicola D'Isidori Serie C1º nel girone B (promossa in Serie B) Coppa Italia SemiproQuarti di finale Maggiori presenzeCampionato: Anzuini, Chimenti (38) Miglior marcatoreCampionato: Chimenti (20) 1972-1973 1974-1975 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti la Società Sportiva Samb…

Traditional climbing route at Lover's Leap, Lake Tahoe Corrugation CornerSeconding Corrugation CornerLocationLake Tahoe, California, United StatesCoordinates38°47′58″N 120°08′06″W / 38.79940°N 120.135°W / 38.79940; -120.135Climbing AreaLover's Leap, Main LedgeRoute TypeTradVertical Gain500 feet (150 m)Pitches3Rating5.7First ascentKurt Edsburg, et al., early 1960s. Corrugation Corner is a technical rock climb at Lover's Leap near Lake Tahoe, CA first estab…

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini sebagian besar atau seluruhnya berasal dari satu sumber. Diskusi terkait dapat dibaca pada the halaman pembicaraan. Tolong bantu untuk memperbaiki artikel ini dengan menambahkan rujukan ke sumber lain yang tepercaya. Artikel ini tidak memiliki referensi atau sumber tepercaya s…

Andrzej Szarmach Informasi pribadiTanggal lahir 3 Oktober 1950 (umur 73)Tempat lahir Gdańsk, PolandiaTinggi 1,78 m (5 ft 10 in)Posisi bermain PenyerangKarier senior*Tahun Tim Tampil (Gol)1969–1972 Arka Gdynia 72 (41)1972–1976 Górnik Zabrze 76 (33)1976–1980 Stal Mielec 131 (76)1980–1985 Auxerre 148 (94)1985–1987 En Avant Guingamp 64 (33)1987–1989 Clermont Foot 32 (20)Tim nasional1973–1982 Polandia 61 (32)Kepelatihan1987–1989 Clermont Foot1989–1991 Châteaur…

Turkish sports club You can help expand this article with text translated from the corresponding article in Turkish. (May 2022) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Consider adding a topic to this templa…

  لمعانٍ أخرى، طالع ديربي (توضيح). الدَّرْبي المحلي أو الدربي (بالإنجليزية: Derby)‏ هو مباراة بين فريقين من نفس المدينة في كرة القدم أو في أي منافسة رياضية.[1] جاء مصطلح ديربي من رياضة الفروسية. وتحديداً من مدينة ديربي كاونتي الإنجليزية، التي كانت تشهد سباقاً للخيول في ا…

Danish estate For the public institution for asylum seekers, see Center Sandholm. SandholmsgårdGeneral informationLocationBlovstrødCountryDenmarkCoordinates55°52′12″N 12°24′13.8″E / 55.87000°N 12.403833°E / 55.87000; 12.403833Completed1749Design and constructionArchitect(s)Lauritz de Thurah Sandholm is an estate in the parish of Blovstrød, Allerød Municipality some 30 km north of Copenhagen, Denmark. History The Sandholm estate traces its history back…

Mariachis de Guadalajara Team logo Cap insignia InformationLeagueMexican League (2021–2023)LocationZapopan, JaliscoBallparkEstadio Panamericano (2021–2023)Established2020Folded2023ColorsBlack and white   Websitehttps://mariachisbeisbol.com/Uniforms Home The Mariachis de Guadalajara (English: Guadalajara Mariachis) were a professional baseball team in the Mexican League based in Zapopan, Jalisco, in the Guadalajara metropolitan area. Their home ballpark was the Estadio Panamericano,…

Questa voce sull'argomento calciatori turchi è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Uğur Çiftçi Nazionalità  Turchia Altezza 179 cm Peso 72 kg Calcio Ruolo Difensore Squadra  Sivasspor Carriera Giovanili 2007-2010 Gençlerbirliği Squadre di club1 2010-2011 Gençlerbirliği0 (0)2011-2013 Hacettepe63 (3)2013-2018 Gençlerbirliği124 (5)2018- Sivasspor137 (1) N…

Pour les articles homonymes, voir Fil. Détail d'un fil au microscope. Pelotes de laine. Bobines de fil. Dessin de bobines de fil. Le fil textile est le produit du filage, c'est-à-dire l'agglutination de fibres textiles pour former un ensemble long. Le processus d'obtention de ce fil peut être industrialisé dans un atelier ou une usine appelée filature. On entrecroise des fils, on tisse avec des machines ou bien à la main. On obtient ainsi des tissus, étoffes, tapis… Les matières servan…

Untuk kegunaan lain, lihat Gula-gula (disambiguasi). Permen rasa buah. Permen (Inggris: candy) adalah makanan berkalori tinggi yang pada umumnya berbahan dasar gula, air, dan sirup fruktosa.[1] Tingginya kadar gula dalam permen membuatnya diklaim sebagai salah satu penyebab gigi berlubang.[1] Proses pembuatan permen Tekstur permen sangat ditentukan oleh lamanya campuran bahan dididihkan, suhu pendinginan, dan cara penanganan setelah pendinginan.[1] Bila campuran gula …

Danish hot dog stands This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Pølsevogn – news · newspapers · books · scholar · JSTOR (January 2016) (Learn how and when to remove this template message) Pølsevogn at Nørrebro in Copenhagen. Pølsevogn(e) (lit. 'sausage wagon(s)')[1] are hot dog stand…

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2019) الدوري البلغاري الممتاز 1990-91 تفاصيل الموسم الدوري البلغاري الممتاز  النسخة 67  البلد بلغاريا  المنظ…

American digital multicast TV network Television channel DABLTypeDigital multicast television network(Black sitcoms)CountryUnited StatesBroadcast areaUnited States(available in most markets)AffiliatesList of Dabl affiliatesHeadquartersNew York City, New YorkProgrammingPicture format 720p (HDTV) 480i (SDTV, widescreen) (downgraded to 4:3 on some over-the-air affiliates) OwnershipOwnerParamount Global(operated by Weigel Broadcasting)ParentCBS Media Ventures(CBS Entertainment Group)Key peopleSteve …

College sports television syndicator This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Raycom Sports – news · newspapers · books · scholar · JSTOR (October 2010) (Learn how and when to remove this template message) Raycom SportsCompany typeSubsidiaryIndustrySports Broadcast TelevisionProductionSales & Marketi…

Archival series of interviews with geographers Geographers on FilmProductionProducersMaynard Weston Dow, andNancy Freeman Dow Geographers on Film is an archival collection and series of more than 550 filmed interviews with experts of the geographic scholar community.[1][2][3][4][5][6][7][8] This is a 40 year long initiative.[9] Production The series was created as an historical and educational resource by geographer and prof…

Soft boot worn by Arctic peoples This article needs attention from an expert in Arctic. The specific problem is: English online sources generally poor. WikiProject Arctic may be able to help recruit an expert. (December 2017) Two pair of sealskin kamiit. Left, winter kamik, right, summer kamik. Mukluks[1] or kamik (Inuktitut: ᑲᒥᒃ [kaˈmik][2]) (singular: ᑲᒪᒃ kamak, plural: ᑲᒦᑦ kamiit) are soft boots, traditionally made of reindeer (caribou) skin or seals…

Disambiguazione – Lanari rimanda qui. Se stai cercando il calciatore argentino, vedi Alejandro Lanari. Come leggere il tassoboxLanario Lanario (Falco biarmicus) Stato di conservazione Rischio minimo Classificazione scientifica Dominio Eukaryota Regno Animalia Sottoregno Eumetazoa Superphylum Deuterostomia Phylum Chordata Subphylum Vertebrata Superclasse Tetrapoda Classe Aves Sottoclasse Neornithes Ordine Falconiformes Famiglia Falconidae Sottofamiglia Falconinae Genere Falco Specie F. …

Kembali kehalaman sebelumnya