Share to: share facebook share twitter share wa share telegram print page

Soft graviton theorem

Scattering of n incoming and m outcoming particles with an outgoing graviton added to one outcoming leg.

In physics, the soft graviton theorem, first formulated by Steven Weinberg in 1965,[1] allows calculation of the S-matrix, used in calculating the outcome of collisions between particles, when low-energy (soft) gravitons come into play.

Specifically, if in a collision between n incoming particles from which m outgoing particles arise, the outcome of the collision depends on a certain S matrix, by adding one or more gravitons to the n + m particles, the resulting S matrix (let it be S') differs from the initial S only by a factor that does not depend in any way, except for the momentum, on the type of particles to which the gravitons couple.[2]

The theorem also holds by putting photons in place of gravitons, thus obtaining a corresponding soft photon theorem.

The theorem is used in the context of attempts to formulate a theory of quantum gravity in the form of a perturbative quantum theory, that is, as an approximation of a possible, as yet unknown, exact theory of quantum gravity.[3]

In 2014 Andrew Strominger and Freddy Cachazo expanded the soft graviton theorem, gauge invariant under translation, to the subleading term of the series, obtaining the gauge invariance under rotation (implying global angular momentum conservation) and connected this to the gravitational spin memory effect.[4]

Formulation

Given particles whose interaction is described by a certain initial S matrix, by adding a soft graviton (i.e., whose energy is negligible compared to the energy of the other particles) that couples to one of the incoming or outgoing particles, the resulting S' matrix is, leaving off some kinematic factors,

,[1][5]

where p is the momentum of the particle interacting with the graviton, ϵμν is the graviton polarization, pG is the momentum of the graviton, ε is an infinitesimal real quantity which helps to shape the integration contour, and the factor η is equal to 1 for outgoing particles and -1 for incoming particles.

The formula comes from a power series and the last term with the big O indicates that terms of higher order are not considered. Although the series differs depending on the spin of the particle coupling to the graviton, the lowest-order term shown above is the same for all spins.[1]

In the case of multiple soft gravitons involved, the factor in front of S is the sum of the factors due to each individual graviton.

If a soft photon (whose energy is negligible compared to the energy of the other particles) is added instead of the graviton, the resulting matrix S' is

,[1][5]

with the same parameters as before but with pγ momentum of the photon, ϵ is its polarization, and q the charge of the particle coupled to the photon.

As for the graviton, in case of more photons, a sum over all the terms occurs.

Subleading order expansion

The expansion of the formula to the subleading term of the series for the graviton was calculated by Andrew Strominger and Freddy Cachazo:[4]

,

where represents the angular momentum of the particle interacting with the graviton.

This formula is gauge invariant under rotation and is connected to the gravitational spin memory effect.[4]

See also

References

  1. ^ a b c d Weinberg, Steven (1965-10-25). "Infrared Photons and Gravitons". Physical Review. 140 (2B): B516 – B524. Bibcode:1965PhRv..140..516W. doi:10.1103/PhysRev.140.B516.
  2. ^ He, Temple; Lysov, Vyacheslav; Mitra, Prahar; Strominger, Andrew (2015-05-07). "BMS supertranslations and Weinberg's soft graviton theorem". Journal of High Energy Physics. 2015 (5): 151. arXiv:1401.7026. Bibcode:2015JHEP...05..151H. doi:10.1007/JHEP05(2015)151. ISSN 1029-8479. S2CID 256013139.
  3. ^ Verma, Mritunjay. Soft Graviton Theorem in Generic Quantum Theory of Gravity (PDF). Harish-Chandra Research Institute.
  4. ^ a b c Cachazo, Freddy; Strominger, Andrew (2014). "Evidence for a New Soft Graviton Theorem". arXiv:1404.4091 [hep-th].
  5. ^ a b Strominger, Andrew (2018-03-06). Lectures on the Infrared Structure of Gravity and Gauge Theory. Princeton University Press. pp. 35–36. ISBN 978-0-691-17950-6.
Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya