Share to: share facebook share twitter share wa share telegram print page

Solar eclipse of March 6, 1905

Solar eclipse of March 6, 1905
Map
Type of eclipse
NatureAnnular
Gamma−0.5768
Magnitude0.9269
Maximum eclipse
Duration478 s (7 min 58 s)
Coordinates39°30′S 117°24′E / 39.5°S 117.4°E / -39.5; 117.4
Max. width of band334 km (208 mi)
Times (UTC)
Greatest eclipse5:12:26
References
Saros138 (25 of 70)
Catalog # (SE5000)9292

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, March 6, 1905,[1][2][3] with a magnitude of 0.9269. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.1 days before apogee (on March 8, 1905, at 7:00 UTC), the Moon's apparent diameter was smaller.[4]

Annularity was visible from Heard Island and McDonald Islands (now an Australian external territory), Australia, New Caledonia, and New Hebrides (now Vanuatu). A partial eclipse was visible for parts of Madagascar, Antarctica, Australia, and Oceania.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[5]

March 6, 1905 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1905 March 06 at 02:19:16.2 UTC
First Umbral External Contact 1905 March 06 at 03:32:13.3 UTC
First Central Line 1905 March 06 at 03:35:52.7 UTC
First Umbral Internal Contact 1905 March 06 at 03:39:35.1 UTC
Equatorial Conjunction 1905 March 06 at 04:51:33.7 UTC
Greatest Duration 1905 March 06 at 05:10:13.7 UTC
Greatest Eclipse 1905 March 06 at 05:12:25.7 UTC
Ecliptic Conjunction 1905 March 06 at 05:19:19.8 UTC
Last Umbral Internal Contact 1905 March 06 at 06:45:31.2 UTC
Last Central Line 1905 March 06 at 06:49:14.2 UTC
Last Umbral External Contact 1905 March 06 at 06:52:54.4 UTC
Last Penumbral External Contact 1905 March 06 at 08:05:47.3 UTC
March 6, 1905 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.92691
Eclipse Obscuration 0.85916
Gamma −0.57684
Sun Right Ascension 23h04m40.3s
Sun Declination -05°55'14.1"
Sun Semi-Diameter 16'07.0"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 23h05m16.9s
Moon Declination -06°25'02.0"
Moon Semi-Diameter 14'45.4"
Moon Equatorial Horizontal Parallax 0°54'09.6"
ΔT 4.1 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of February–March 1905
February 19
Ascending node (full moon)
March 6
Descending node (new moon)
Partial lunar eclipse
Lunar Saros 112
Annular solar eclipse
Solar Saros 138

Eclipses in 1905

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 138

Inex

Triad

Solar eclipses of 1902–1906

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]

The partial solar eclipses on May 7, 1902 and October 31, 1902 occur in the previous lunar year eclipse set, and the partial solar eclipse on July 21, 1906 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1902 to 1906
Descending node   Ascending node
Saros Map Gamma Saros Map Gamma
108 April 8, 1902

Partial
1.5024 113 October 1, 1902
118 March 29, 1903

Annular
0.8413 123 September 21, 1903

Total
−0.8967
128 March 17, 1904

Annular
0.1299 133 September 9, 1904

Total
−0.1625
138 March 6, 1905

Annular
−0.5768 143
August 30, 1905

Total
0.5708
148 February 23, 1906

Partial
−1.2479 153 August 20, 1906

Partial
1.3731

Saros 138

This eclipse is a part of Saros series 138, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on June 6, 1472. It contains annular eclipses from August 31, 1598 through February 18, 2482; a hybrid eclipse on March 1, 2500; and total eclipses from March 12, 2518 through April 3, 2554. The series ends at member 70 as a partial eclipse on July 11, 2716. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 23 at 8 minutes, 2 seconds on February 11, 1869, and the longest duration of totality will be produced by member 61 at 56 seconds on April 3, 2554. All eclipses in this series occur at the Moon’s descending node of orbit.[7]

Series members 20–41 occur between 1801 and 2200:
20 21 22

January 10, 1815

January 20, 1833

February 1, 1851
23 24 25

February 11, 1869

February 22, 1887

March 6, 1905
26 27 28

March 17, 1923

March 27, 1941

April 8, 1959
29 30 31

April 18, 1977

April 29, 1995

May 10, 2013
32 33 34

May 21, 2031

May 31, 2049

June 11, 2067
35 36 37

June 22, 2085

July 4, 2103

July 14, 2121
38 39 40

July 25, 2139

August 5, 2157

August 16, 2175
41

August 26, 2193

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 5, 1848 and July 30, 1935
March 5–6 December 22–24 October 9–11 July 29–30 May 17–18
108 110 112 114 116

March 5, 1848

July 29, 1859

May 17, 1863
118 120 122 124 126

March 6, 1867

December 22, 1870

October 10, 1874

July 29, 1878

May 17, 1882
128 130 132 134 136

March 5, 1886

December 22, 1889

October 9, 1893

July 29, 1897

May 18, 1901
138 140 142 144 146

March 6, 1905

December 23, 1908

October 10, 1912

July 30, 1916

May 18, 1920
148 150 152 154

March 5, 1924

December 24, 1927

October 11, 1931

July 30, 1935

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on December 18, 2188 (part of Saros 164) and November 18, 2199 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2134

December 10, 1806
(Saros 129)

November 9, 1817
(Saros 130)

October 9, 1828
(Saros 131)

September 7, 1839
(Saros 132)

August 7, 1850
(Saros 133)

July 8, 1861
(Saros 134)

June 6, 1872
(Saros 135)

May 6, 1883
(Saros 136)

April 6, 1894
(Saros 137)

March 6, 1905
(Saros 138)

February 3, 1916
(Saros 139)

January 3, 1927
(Saros 140)

December 2, 1937
(Saros 141)

November 1, 1948
(Saros 142)

October 2, 1959
(Saros 143)

August 31, 1970
(Saros 144)

July 31, 1981
(Saros 145)

June 30, 1992
(Saros 146)

May 31, 2003
(Saros 147)

April 29, 2014
(Saros 148)

March 29, 2025
(Saros 149)

February 27, 2036
(Saros 150)

January 26, 2047
(Saros 151)

December 26, 2057
(Saros 152)

November 24, 2068
(Saros 153)

October 24, 2079
(Saros 154)

September 23, 2090
(Saros 155)

August 24, 2101
(Saros 156)

July 23, 2112
(Saros 157)

June 23, 2123
(Saros 158)

May 23, 2134
(Saros 159)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

May 5, 1818
(Saros 135)

April 15, 1847
(Saros 136)

March 25, 1876
(Saros 137)

March 6, 1905
(Saros 138)

February 14, 1934
(Saros 139)

January 25, 1963
(Saros 140)

January 4, 1992
(Saros 141)

December 14, 2020
(Saros 142)

November 25, 2049
(Saros 143)

November 4, 2078
(Saros 144)

October 16, 2107
(Saros 145)

September 26, 2136
(Saros 146)

September 5, 2165
(Saros 147)

August 16, 2194
(Saros 148)

Notes

  1. ^ "March 6, 1905 Annular Solar Eclipse". timeanddate. Retrieved 30 July 2024.
  2. ^ "Page 4". The Age. Melbourne, Victoria, Victoria, Australia. 1905-03-06. p. 4. Retrieved 2023-10-27 – via Newspapers.com.
  3. ^ "Eclipse of the sun". The Leader. Orange, New South Wales, Australia. 1905-03-06. p. 3. Retrieved 2023-10-27 – via Newspapers.com.
  4. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 30 July 2024.
  5. ^ "Total Solar Eclipse of 1905 Mar 06". EclipseWise.com. Retrieved 30 July 2024.
  6. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  7. ^ "NASA - Catalog of Solar Eclipses of Saros 138". eclipse.gsfc.nasa.gov.

References

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Boubacar KeitaInformasi pribadiNama lengkap Boubacar KeitaTanggal lahir 20 Mei 1984 (umur 39)Tempat lahir Conakry, GuineaTinggi 1,86 m (6 ft 1 in)Posisi bermain Bek, gelandangInformasi klubKlub saat ini Kenkre FCNomor 6Karier senior*T…

Часть серии статей о Холокосте Идеология и политика Расовая гигиена · Расовый антисемитизм · Нацистская расовая политика · Нюрнбергские расовые законы Шоа Лагеря смерти Белжец · Дахау · Майданек · Малый Тростенец · Маутхаузен · …

Mira LesmanaMira Lesmana saat wawancara dengan Narasi, September 2020LahirMira Lesmanawati8 Agustus 1964 (umur 59)Jakarta, IndonesiaAlmamaterInstitut Kesenian JakartaPekerjaanProduserpenulis laguTahun aktif1980 - sekarangSuami/istriMathias Muchus ​(m. 1990)​Anak2Orang tuaJack Lesmana (ayah) Nien Lesmana (ibu)KeluargaIndra Lesmana (adik) Eva Celia (keponakan) Lauren Marie-Elizabeth Antariksa (keponakan) Mira Lesmanawati (lahir 8 Agustus 1964) adalah seorang …

Capital and largest city of Transnistria Not to be confused with Terespol. You can help expand this article with text translated from the corresponding article in Russian. (February 2017) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into t…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: List of things named after Alexander Hamilton – news · newspapers · books · scholar · JSTOR (December 2022) (Learn how and when to remove this template message) Portrait by John Trumbull, c. 1792 Since the death of Alexander Hamilton on July 12, 1804,[1] n…

Paus kelabuRentang fosil: Akhir pleistosen–sekarang[1] PreЄ Є O S D C P T J K Pg N Perbandingan ukuran dengan rata-rata ukuran manusia Status konservasi Risiko Rendah  (IUCN 3.1)[2] CITES Apendiks I (CITES)[3] Klasifikasi ilmiah Domain: Eukaryota Kerajaan: Animalia Filum: Chordata Kelas: Mammalia Ordo: Artiodactyla Infraordo: Cetacea Parvordo: Mysticeti Famili: Eschrichtiidae Genus: Eschrichtius Spesies: Eschrichtius robustusLilljeborg, 1861 Peta persebaran …

Lazzaretto di FiladelfiaFacciata del lazzaretto nel 2009LocalizzazioneStato Stati Uniti LocalitàFiladelfia Coordinate39°51′38″N 75°18′02″W / 39.860556°N 75.300556°W39.860556; -75.300556Coordinate: 39°51′38″N 75°18′02″W / 39.860556°N 75.300556°W39.860556; -75.300556 Informazioni generaliCondizioniIn uso Costruzionefine XVIII secolo StileStile Federale Usoisolamento pazienti contagiosi Modifica dati su Wikidata · Manuale Il Lazzar…

Pedro Cea Informasi pribadiNama lengkap José Pedro CeaTanggal lahir (1900-09-01)1 September 1900Tempat lahir Redondela, GaliciaTanggal meninggal 18 September 1970(1970-09-18) (umur 70)Tempat meninggal Montevideo, UruguayKarier senior*Tahun Tim Tampil (Gol) Nacional Tim nasional1923-1932 Uruguay 27 (13)Kepelatihan1941-1942 Uruguay Prestasi Mewakili  Uruguay Sepak bola Pria 1924 Paris Kompetisi Tim 1928 Amsterdam Kompetisi Tim * Penampilan dan gol di klub senior hanya dihitung dari liga…

Members of the New South Wales Legislative Council who served in the 50th Parliament were affected by the 1991 referendum which reduced the number of members and reduced their term from three terms of the Legislative Assembly to two terms, meaning the maximum term was eight years. The Council consisted of 42 members, 12 elected in 1984, 15 elected in 1988 and 15 elected in 1991. Half of the council would face re-election in 1995 and half did not face re-election until 1999.[1][2]…

Европейская сардина Научная классификация Домен:ЭукариотыЦарство:ЖивотныеПодцарство:ЭуметазоиБез ранга:Двусторонне-симметричныеБез ранга:ВторичноротыеТип:ХордовыеПодтип:ПозвоночныеИнфратип:ЧелюстноротыеГруппа:Костные рыбыКласс:Лучепёрые рыбыПодкласс:Новопёрые …

Chambérycomune Chambéry – VedutaPanorama della città LocalizzazioneStato Francia RegioneAlvernia-Rodano-Alpi Dipartimento Savoia ArrondissementChambéry CantoneChambéry-1Chambéry-2Chambéry-3 AmministrazioneSindacoThierry Repentin (PS) dal 4-7-2020 TerritorioCoordinate45°33′59″N 5°55′15″E / 45.566389°N 5.920833°E45.566389; 5.920833 (Chambéry)Coordinate: 45°33′59″N 5°55′15″E / 45.566389°N 5.920833°E45.566389; …

Thai dessert Sarim, served with ice on top Sarim (Thai: ซ่าหริ่ม, pronounced [sâːrìm]; or ซาหริ่ม, pronounced [sāːrìm]) is a Thai dessert. It consists of colourful (usually pink and green) thin noodles made from mung bean flour in coconut milk and syrup, served cold with crushed ice.[1] The dish is mentioned in the Kap He Chom Khrueang Khao Wan poem of King Rama II (r. 1809 – 1824), though back then it was seasoned with patchouli rath…

Paranthropus boiseiRentang fosil: Pliosen-Pleistosen Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Mammalia Ordo: Primates Famili: Hominidae Genus: Paranthropus Spesies: P. boisei Nama binomial Paranthropus boisei(Mary Leakey, 1959) Paranthropus boisei (awalnya disebut Zinjanthropus boisei dan lalu Australopithecus boisei) adalah hominin awal dan dideskripsikan sebagai spesies Paranthropus terbesar. Spesies ini hidup sekitar 2.6 hingga 1.2 juta tahun yang lalu selama Pliosen …

Запрос «Пугачёва» перенаправляется сюда; см. также другие значения. Алла Пугачёва На фестивале «Славянский базар в Витебске», 2016 год Основная информация Полное имя Алла Борисовна Пугачёва Дата рождения 15 апреля 1949(1949-04-15) (75 лет) Место рождения Москва, СССР[1] …

Chief Wilson of the Pittsburgh Pirates set the all-time record for triples in a season with 36 in 1912. In baseball, a triple is recorded when the ball is hit so that the batter is able to advance all the way to third base, scoring any runners who were already on base, with no errors by the defensive team on the play. In Major League Baseball (MLB), a player in each league [L] is recognized for leading the league in triples.[1] Only triples hit in a particular league count toward that le…

Saudi Arabian novelist (born 1979) Mohammed Hasan AlwanBorn(1979-08-27)27 August 1979Riyadh, Saudi ArabiaNationalitySaudi ArabianGenreNovels, short stories Mohammed Hasan Alwan (born 27 August 1979) is a Saudi Arabian novelist.[1] He was born in Riyadh and studied Computer Information Systems at King Saud University, obtaining a bachelor's degree in 2002. He also obtained an MBA from the University of Portland, Oregon in 2008 and Ph.D from Carleton University, Ottawa in 2016.[2] …

1940 film by Frank Lloyd The Howards of VirginiaNewspaper advertisementDirected byFrank LloydScreenplay bySidney BuchmanBased onThe Tree of Liberty 1939 novelby Elizabeth PageProduced byFrank LloydJack H. Skirball (associate producer)StarringCary GrantMartha ScottCedric HardwickeCinematographyBert GlennonEdited byPaul WeatherwaxMusic byRichard HagemanDistributed byColumbia PicturesRelease date September 19, 1940 (1940-09-19) Running time122 minutesCountryUnited StatesLanguageEngli…

此條目翻譯品質不佳。翻譯者可能不熟悉中文或原文語言,也可能使用了機器翻譯。請協助翻譯本條目或重新編寫,并注意避免翻译腔的问题。明顯拙劣的翻譯請改掛{{d|G13}}提交刪除。  「希拉克」重定向至此。關於法国洛泽尔省的同名市镇,請見「希拉克 (洛泽尔省)」。 雅克·勒内·希拉克Jacques René Chirac 第22任法國總統安道爾大公任期1995年5月17日—2007年5月16日总…

No debe confundirse con el Consejo Europeo, distinto y que reúne a los jefes de Estado y/o de gobierno de los 27 Estados de la Unión; o el Consejo de Europa, organización internacional (independiente y ajena a la UE) de cooperación de todos los países europeos. Consejo de la Unión EuropeaConsejo Edificio Europa, Bruselas (Bélgica)Información generalÁmbito Unión EuropeaTipo Cámara Alta(bicameral)LiderazgoPresidencia de turno (duración de 6 meses) Bélgica Bélgica1º semestre de …

Måneskin Måneskin en 2018. De gauche à droite : Ethan Torchio, Victoria De Angelis, Damiano David et Thomas RaggiInformations générales Pays d'origine Italie Genre musical Rock AlternatifGlam RockPop RockFunk Rock Années actives Depuis 2016 Labels RCASonyEpic Site officiel www.maneskin.it Composition du groupe Membres Damiano DavidVictoria De Angelis Thomas RaggiEthan Torchio Logo de Måneskin.modifier Måneskin (« Clair de Lune » en danois) est un groupe de rock italien, …

Kembali kehalaman sebelumnya