The key reason for studentizing is that, in regression analysis of a multivariate distribution, the variances of the residuals at different input variable values may differ, even if the variances of the errors at these different input variable values are equal. The issue is the difference between errors and residuals in statistics, particularly the behavior of residuals in regressions.
Given a random sample (Xi, Yi), i = 1, ..., n, each pair (Xi, Yi) satisfies
where the errors, are independent and all have the same variance . The residuals are not the true errors, but estimates, based on the observable data. When the method of least squares is used to estimate and , then the residuals , unlike the errors , cannot be independent since they satisfy the two constraints
and
(Here εi is the ith error, and is the ith residual.)
The residuals, unlike the errors, do not all have the same variance: the variance decreases as the corresponding x-value gets farther from the average x-value. This is not a feature of the data itself, but of the regression better fitting values at the ends of the domain. It is also reflected in the influence functions of various data points on the regression coefficients: endpoints have more influence. This can also be seen because the residuals at endpoints depend greatly on the slope of a fitted line, while the residuals at the middle are relatively insensitive to the slope. The fact that the variances of the residuals differ, even though the variances of the true errors are all equal to each other, is the principal reason for the need for studentization.
It is not simply a matter of the population parameters (mean and standard deviation) being unknown – it is that regressions yield different residual distributions at different data points, unlike point estimators of univariate distributions, which share a common distribution for residuals.
Given the definitions above, the Studentized residual is then
where hii is the leverage, and is an appropriate estimate of σ (see below).
In the case of a mean, this is equal to:
Internal and external studentization
The usual estimate of σ2 is the internally studentized residual
where m is the number of parameters in the model (2 in our example).
But if the i th case is suspected of being improbably large, then it would also not be normally distributed. Hence it is prudent to exclude the i th observation from the process of estimating the variance when one is considering whether the i th case may be an outlier, and instead use the externally studentized residual, which is
based on all the residuals except the suspect i th residual. Here is to emphasize that for suspect i are computed with i th case excluded.
If the estimate σ2includes the i th case, then it is called the internally studentized residual, (also known as the standardized residual[1]).
If the estimate is used instead, excluding the i th case, then it is called the externally studentized, .
Distribution
"Tau distribution" redirects here. Not to be confused with Tau coefficient.
On the other hand, the internally studentized residuals are in the range , where ν = n − m is the number of residual degrees of freedom. If ti represents the internally studentized residual, and again assuming that the errors are independent identically distributed Gaussian variables, then:[2]
where t is a random variable distributed as Student's t-distribution with ν − 1 degrees of freedom. In fact, this implies that ti2 /ν follows the beta distributionB(1/2,(ν − 1)/2).
The distribution above is sometimes referred to as the tau distribution;[2] it was first derived by Thompson in 1935.[3]
When ν = 3, the internally studentized residuals are uniformly distributed between and .
If there is only one residual degree of freedom, the above formula for the distribution of internally studentized residuals doesn't apply. In this case, the ti are all either +1 or −1, with 50% chance for each.
The standard deviation of the distribution of internally studentized residuals is always 1, but this does not imply that the standard deviation of all the ti of a particular experiment is 1.
For instance, the internally studentized residuals when fitting a straight line going through (0, 0) to the points (1, 4), (2, −1), (2, −1) are , and the standard deviation of these is not 1.
Note that any pair of studentized residual ti and tj (where ), are NOT i.i.d. They have the same distribution, but are not independent due to constraints on the residuals having to sum to 0 and to have them be orthogonal to the design matrix.
Software implementations
Many programs and statistics packages, such as R, Python, etc., include implementations of Studentized residual.
^ abAllen J. Pope (1976), "The statistics of residuals and the detection of outliers", U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Ocean Survey, Geodetic Research and Development Laboratory, 136 pages, [1], eq.(6)