Superconducting electric machine
Superconducting electric machines are electromechanical systems that rely on the use of one or more superconducting elements. Since superconductors have no DC resistance, they typically have greater efficiency. The most important parameter that is of utmost interest in superconducting machine is the generation of a very high magnetic field that is not possible in a conventional machine. This leads to a substantial decrease in the motor volume; which means a great increase in the power density. However, since superconductors only have zero resistance under a certain superconducting transition temperature, Tc that is hundreds of degrees lower than room temperature, cryogenics are required. HistoryDC homopolar machines are among the oldest electric machines. Michael Faraday made a Homopolar motor in 1831. Superconducting DC homopolar machines use superconductors in their stationary field windings and normal conductors in their rotating pickup winding. In 2005 the General Atomics company received a contract for the creation of a large low speed superconducting homopolar motor for ship propulsion.[1] Superconducting homopolar generators have been considered as pulsed power sources for laser weapon systems. However, homopolar machines have not been practical for most applications. In the past, experimental AC synchronous superconducting machines were made with rotors using low-temperature metal superconductors that exhibit superconductivity when cooled with liquid helium. These worked, however the high cost of liquid helium cooling made them too expensive for most applications. More recently AC synchronous superconducting machines have been made with ceramic rotor conductors that exhibit high-temperature superconductivity. These have liquid nitrogen cooled ceramic superconductors in their rotors. The ceramic superconductors are also called high-temperature or liquid-nitrogen-temperature superconductors. Because liquid nitrogen is relatively inexpensive and easier to handle, there is a greater interest in the ceramic superconductor machines than the liquid helium cooled metal superconductor machines. Present interestPresent interest in AC synchronous ceramic superconducting machines is in larger machines like the generators used in utility and ship power plants and the motors used in ship propulsion. American Superconductor and Northrop Grumman created and demonstrated a 36.5 MW ceramic superconductor ship propulsion motor. Because they are light-weight and therefore offer lower tower and construction costs they are seen as a promising generator technology for wind turbines. With super conducting generators the weight and volume of generators could be reduced compared to direct drive synchronous generators, which could lead to lower costs of the whole turbine.[2] First commercial turbines were expected to be installed approximately in 2020.[3] Advantages and disadvantages of superconducting electric machinesCompared with a conventional conductor machineSuperconducting electric machines typically have the following advantages:
There are also the following disadvantages:
High-temperature superconductors versus Low-temperature superconductors
References
Further reading
External links
|