In a topological field theory, correlation functions do not depend on the metric of spacetime. This means that the theory is not sensitive to changes in the shape of spacetime; if spacetime warps or contracts, the correlation functions do not change. Consequently, they are topological invariants.
Topological field theories are not very interesting on flat Minkowski spacetime used in particle physics. Minkowski space can be contracted to a point, so a TQFT applied to Minkowski space results in trivial topological invariants. Consequently, TQFTs are usually applied to curved spacetimes, such as, for example, Riemann surfaces. Most of the known topological field theories are defined on spacetimes of dimension less than five. It seems that a few higher-dimensional theories exist, but they are not very well understood [citation needed].
Quantum gravity is believed to be background-independent (in some suitable sense), and TQFTs provide examples of background independent quantum field theories. This has prompted ongoing theoretical investigations into this class of models.
(Caveat: It is often said that TQFTs have only finitely many degrees of freedom. This is not a fundamental property. It happens to be true in most of the examples that physicists and mathematicians study, but it is not necessary. A topological sigma model targets infinite-dimensional projective space, and if such a thing could be defined it would have countably infinitely many degrees of freedom.)
Specific models
The known topological field theories fall into two general classes: Schwarz-type TQFTs and Witten-type TQFTs. Witten TQFTs are also sometimes referred to as cohomological field theories. See (Schwarz 2000).
Schwarz-type TQFTs
In Schwarz-type TQFTs, the correlation functions or partition functions of the system are computed by the path integral of metric-independent action functionals. For instance, in the BF model, the spacetime is a two-dimensional manifold M, the observables are constructed from a two-form F, an auxiliary scalar B, and their derivatives. The action (which determines the path integral) is
The spacetime metric does not appear anywhere in the theory, so the theory is explicitly topologically invariant. The first example appeared in 1977 and is due to A. Schwarz; its action functional is:
Another more famous example is Chern–Simons theory, which can be applied to knot invariants. In general, partition functions depend on a metric but the above examples are metric-independent.
Witten-type TQFTs
The first example of Witten-type TQFTs appeared in Witten's paper in 1988 (Witten 1988a), i.e. topological Yang–Mills theory in four dimensions. Though its action functional contains the spacetime metric gαβ, after a topological twist it turns out to be metric independent. The independence of the stress-energy tensor Tαβ of the system from the metric depends on whether the BRST-operator is closed. Following Witten's example many other examples can be found in string theory.
Witten-type TQFTs arise if the following conditions are satisfied:
The action of the TQFT has a symmetry, i.e. if denotes a symmetry transformation (e.g. a Lie derivative) then holds.
There are existing observables which satisfy for all .
The stress-energy-tensor (or similar physical quantities) is of the form for an arbitrary tensor .
As an example (Linker 2015): Given a 2-form field with the differential operator which satisfies , then the action has a symmetry if since
.
Further, the following holds (under the condition that is independent on and acts similarly to a functional derivative):
.
The expression is proportional to with another 2-form .
Now any averages of observables for the corresponding Haar measure are independent on the "geometric" field and are therefore topological:
.
The third equality uses the fact that and the invariance of the Haar measure under symmetry transformations. Since is only a number, its Lie derivative vanishes.
Mathematical formulations
The original Atiyah–Segal axioms
Atiyah suggested a set of axioms for topological quantum field theory, inspired by Segal's proposed axioms for conformal field theory (subsequently, Segal's idea was summarized in Segal (2001)), and Witten's geometric meaning of supersymmetry in Witten (1982). Atiyah's axioms are constructed by gluing the boundary with a differentiable (topological or continuous) transformation, while Segal's axioms are for conformal transformations. These axioms have been relatively useful for mathematical treatments of Schwarz-type QFTs, although it isn't clear that they capture the whole structure of Witten-type QFTs. The basic idea is that a TQFT is a functor from a certain category of cobordisms to the category of vector spaces.
There are in fact two different sets of axioms which could reasonably be called the Atiyah axioms. These axioms differ basically in whether or not they apply to a TQFT defined on a single fixed n-dimensional Riemannian / Lorentzian spacetime M or a TQFT defined on all n-dimensional spacetimes at once.
Let Λ be a commutative ring with 1 (for almost all real-world purposes we will have Λ = Z, R or C). Atiyah originally proposed the axioms of a topological quantum field theory (TQFT) in dimension d defined over a ground ring Λ as following:
A finitely generated Λ-module Z(Σ) associated to each oriented closed smooth d-dimensional manifold Σ (corresponding to the homotopy axiom),
An element Z(M) ∈ Z(∂M) associated to each oriented smooth (d + 1)-dimensional manifold (with boundary) M (corresponding to an additive axiom).
These data are subject to the following axioms (4 and 5 were added by Atiyah):
Z is functorial with respect to orientation preserving diffeomorphisms of Σ and M,
Z is involutory, i.e. Z(Σ*) = Z(Σ)* where Σ* is Σ with opposite orientation and Z(Σ)* denotes the dual module,
Z is multiplicative.
Z() = Λ for the d-dimensional empty manifold and Z() = 1 for the (d + 1)-dimensional empty manifold.
Z(M*) = Z(M) (the hermitian axiom). If so that Z(M) can be viewed as a linear transformation between hermitian vector spaces, then this is equivalent to Z(M*) being the adjoint of Z(M).
Remark. If for a closed manifold M we view Z(M) as a numerical invariant, then for a manifold with a boundary we should think of Z(M) ∈ Z(∂M) as a "relative" invariant. Let f : Σ → Σ be an orientation-preserving diffeomorphism, and identify opposite ends of Σ × I by f. This gives a manifold Σf and our axioms imply
where Σ(f) is the induced automorphism of Z(Σ).
Remark. For a manifold M with boundary Σ we can always form the double which is a closed manifold. The fifth axiom shows that
where on the right we compute the norm in the hermitian (possibly indefinite) metric.
The relation to physics
Physically (2) + (4) are related to relativistic invariance while (3) + (5) are indicative of the quantum nature of the theory.
Σ is meant to indicate the physical space (usually, d = 3 for standard physics) and the extra dimension in Σ × I is "imaginary" time. The space Z(Σ) is the Hilbert space of the quantum theory and a physical theory, with a HamiltonianH, will have a time evolution operator eitH or an "imaginary time" operator e−tH. The main feature of topological QFTs is that H = 0, which implies that there is no real dynamics or propagation, along the cylinder Σ × I. However, there can be non-trivial "propagation" (or tunneling amplitudes) from Σ0 to Σ1 through an intervening manifold M with ; this reflects the topology of M.
If ∂M = Σ, then the distinguished vector Z(M) in the Hilbert space Z(Σ) is thought of as the vacuum state defined by M. For a closed manifold M the number Z(M) is the vacuum expectation value. In analogy with statistical mechanics it is also called the partition function.
The reason why a theory with a zero Hamiltonian can be sensibly formulated resides in the Feynman path integral approach to QFT. This incorporates relativistic invariance (which applies to general (d + 1)-dimensional "spacetimes") and the theory is formally defined by a suitable Lagrangian—a functional of the classical fields of the theory. A Lagrangian which involves only first derivatives in time formally leads to a zero Hamiltonian, but the Lagrangian itself may have non-trivial features which relate to the topology of M.
In this case Σ consists of finitely many points. To a single point we associate a vector space V = Z(point) and to n-points the n-fold tensor product: V⊗n = V ⊗ … ⊗ V. The symmetric groupSn acts on V⊗n. A standard way to get the quantum Hilbert space is to start with a classical symplectic manifold (or phase space) and then quantize it. Let us extend Sn to a compact Lie group G and consider "integrable" orbits for which the symplectic structure comes from a line bundle, then quantization leads to the irreducible representations V of G. This is the physical interpretation of the Borel–Weil theorem or the Borel–Weil–Bott theorem. The Lagrangian of these theories is the classical action (holonomy of the line bundle). Thus topological QFT's with d = 0 relate naturally to the classical representation theory of Lie groups and the symmetric group.
d = 1
We should consider periodic boundary conditions given by closed loops in a compact symplectic manifold X. Along with Witten (1982) holonomy such loops as used in the case of d = 0 as a Lagrangian are then used to modify the Hamiltonian. For a closed surface M the invariant Z(M) of the theory is the number of pseudo holomorphic mapsf : M → X in the sense of Gromov (they are ordinary holomorphic maps if X is a Kähler manifold). If this number becomes infinite i.e. if there are "moduli", then we must fix further data on M. This can be done by picking some points Pi and then looking at holomorphic maps f : M → X with f(Pi) constrained to lie on a fixed hyperplane. Witten (1988b) has written down the relevant Lagrangian for this theory. Floer has given a rigorous treatment, i.e. Floer homology, based on Witten's Morse theory ideas; for the case when the boundary conditions are over the interval instead of being periodic, the path initial and end-points lie on two fixed Lagrangian submanifolds. This theory has been developed as Gromov–Witten invariant theory.
Another example is HolomorphicConformal Field Theory. This might not have been considered strictly topological quantum field theory at the time because Hilbert spaces are infinite dimensional. The conformal field theories are also related to the compact Lie group G in which the classical phase consists of a central extension of the loop group(LG). Quantizing these produces the Hilbert spaces of the theory of irreducible (projective) representations of LG. The group Diff+(S1) now substitutes for the symmetric group and plays an important role. As a result, the partition function in such theories depends on complex structure, thus it is not purely topological.
d = 2
Jones–Witten theory is the most important theory in this case. Here the classical phase space, associated with a closed surface Σ is the moduli space of a flat G-bundle over Σ. The Lagrangian is an integer multiple of the Chern–Simons function of a G-connection on a 3-manifold (which has to be "framed"). The integer multiple k, called the level, is a parameter of the theory and k → ∞ gives the classical limit. This theory can be naturally coupled with the d = 0 theory to produce a "relative" theory. The details have been described by Witten who shows that the partition function for a (framed) link in the 3-sphere is just the value of the Jones polynomial for a suitable root of unity. The theory can be defined over the relevant cyclotomic field, see Atiyah (1988) harvtxt error: no target: CITEREFAtiyah1988 (help). By considering a Riemann surface with boundary, we can couple it to the d = 1 conformal theory instead of coupling d = 2 theory to d = 0. This has developed into Jones–Witten theory and has led to the discovery of deep connections between knot theory and quantum field theory.
d = 3
Donaldson has defined the integer invariant of smooth 4-manifolds by using moduli spaces of SU(2)-instantons. These invariants are polynomials on the second homology. Thus 4-manifolds should have extra data consisting of the symmetric algebra of H2. Witten (1988a) has produced a super-symmetric Lagrangian which formally reproduces the Donaldson theory. Witten's formula might be understood as an infinite-dimensional analogue of the Gauss–Bonnet theorem. At a later date, this theory was further developed and became the Seiberg–Witten gauge theory which reduces SU(2) to U(1) in N = 2, d = 4 gauge theory. The Hamiltonian version of the theory has been developed by Floer in terms of the space of connections on a 3-manifold. Floer uses the Chern–Simons function, which is the Lagrangian of Jones–Witten theory to modify the Hamiltonian. For details, see Atiyah (1988) harvtxt error: no target: CITEREFAtiyah1988 (help). Witten (1988a) has also shown how one can couple the d = 3 and d = 1 theories together: this is quite analogous to the coupling between d = 2 and d = 0 in Jones–Witten theory.
Now, topological field theory is viewed as a functor, not on a fixed dimension but on all dimensions at the same time.
The case of a fixed spacetime
Let BordM be the category whose morphisms are n-dimensional submanifolds of M and whose objects are connected components of the boundaries of such submanifolds. Regard two morphisms as equivalent if they are homotopic via submanifolds of M, and so form the quotient category hBordM: The objects in hBordM are the objects of BordM, and the morphisms of hBordM are homotopy equivalence classes of morphisms in BordM. A TQFT on M is a symmetric monoidal functor from hBordM to the category of vector spaces.
Note that cobordisms can, if their boundaries match, be sewn together to form a new bordism. This is the composition law for morphisms in the cobordism category. Since functors are required to preserve composition, this says that the linear map corresponding to a sewn together morphism is just the composition of the linear map for each piece.
To consider all spacetimes at once, it is necessary to replace hBordM by a larger category. So let Bordn be the category of bordisms, i.e. the category whose morphisms are n-dimensional manifolds with boundary, and whose objects are the connected components of the boundaries of n-dimensional manifolds. (Note that any (n−1)-dimensional manifold may appear as an object in Bordn.) As above, regard two morphisms in Bordn as equivalent if they are homotopic, and form the quotient category hBordn. Bordn is a monoidal category under the operation which maps two bordisms to the bordism made from their disjoint union. A TQFT on n-dimensional manifolds is then a functor from hBordn to the category of vector spaces, which maps disjoint unions of bordisms to their tensor product.
For example, for (1 + 1)-dimensional bordisms (2-dimensional bordisms between 1-dimensional manifolds), the map associated with a pair of pants gives a product or coproduct, depending on how the boundary components are grouped – which is commutative or cocommutative, while the map associated with a disk gives a counit (trace) or unit (scalars), depending on the grouping of boundary components, and thus (1+1)-dimension TQFTs correspond to Frobenius algebras.
Furthermore, we can consider simultaneously 4-dimensional, 3-dimensional and 2-dimensional manifolds related by the above bordisms, and from them we can obtain ample and important examples.
Development at a later time
Looking at the development of topological quantum field theory, we should consider its many applications to Seiberg–Witten gauge theory, topological string theory, the relationship between knot theory and quantum field theory, and quantum knot invariants. Furthermore, it has generated topics of great interest in both mathematics and physics. Also of important recent interest are non-local operators in TQFT (Gukov & Kapustin (2013)). If string theory is viewed as the fundamental, then non-local TQFTs can be viewed as non-physical models that provide a computationally efficient approximation to local string theory.
Stochastic (partial) differential equations (SDEs) are the foundation for models of everything in nature above the scale of quantum degeneracy and coherence and are essentially Witten-type TQFTs. All SDEs possess topological or BRST supersymmetry, , and in the operator representation of stochastic dynamics is the exterior derivative, which is commutative with the stochastic evolution operator. This supersymmetry preserves the continuity of phase space by continuous flows, and the phenomenon of supersymmetric spontaneous breakdown by a global non-supersymmetric ground state encompasses such well-established physical concepts as chaos, turbulence, 1/f and crackling noises, self-organized criticality etc. The topological sector of the theory for any SDE can be recognized as a Witten-type TQFT.
Gukov, Sergei; Kapustin, Anton (2013). "Topological Quantum Field Theory, Nonlocal Operators, and Gapped Phases of Gauge Theories". arXiv:1307.4793 [hep-th].
Untuk kegunaan lain, lihat All Shook Up (disambiguasi). All Shook UpSingel oleh Elvis PresleySisi-BThat's When Your Heartaches BeginDirilis22 Maret 1957 (1957-03-22)Direkam12 Januari 1957, Radio Recorders, Hollywood, CaliforniaGenreRock and roll, rhythm and blues, RockabillyDurasi1:57LabelRCA VictorPenciptaOtis BlackwellKronologi singel Elvis Presley Too Much / Playing for Keeps(1957) All Shook Up (1957) (Let Me Be Your) Teddy Bear (1957) All Shook Up adalah sebuah lagu yang direkam oleh El…
Final Fantasy VIII Cover Final Fantasy VIII versi PlayStationPublikasiPlayStationJPN: February 11 1999NA: September 7 1999[1]EU: October 27 1999AUS: October 29 1999Windows (PC)NA: January 25 2000EU: February 18 2000JPN: March 23 2000GenreConsole role-playing gameLatar tempatFinal Fantasy universe (en) Bahasa Daftar Inggris, Italia, Jerman, Prancis dan Spanyol 60 Karakteristik teknisSistem operasiAndroid dan iOS PlatformWindows, PlayStation, Android dan iOS ModePermainan video pemain tung…
Defunct Spanish version of Cartoon Network Not to be confused with Cartoonito (Latin American TV channel). Television channel CartoonitoBroadcast areaSpainHeadquarters160 Old Street, London, England, United KingdomProgrammingLanguage(s)SpanishEnglishPicture format4:3 SDTVOwnershipOwnerTurner Broadcasting System EspañaSister channelsCartoon NetworkHistoryLaunchedSeptember 1, 2011; 12 years ago (2011-09-01)ReplacedBoomerangClosed30 June 2013; 10 years ago (2013…
Nevill Francis Mott, London 1952 Sir Nevill Francis Mott (30 September 1905-8 Agustus 1996) adalah fisikawan Inggris yang bekerja pada sifat-sifat semikonduktor zat-zat seperti kaca dengan Philip W. Anderson. Ia menerima Penghargaan Nobel dalam Fisika 1977 dengan Philip Anderson dan John van Vleck. Pranala luar Biografi dari scienceworld.com Wikimedia Commons memiliki media mengenai Nevill Francis Mott. lbsPenerima Penghargaan Nobel Fisika1901–1925 1901: Röntgen 1902: Lorentz / Zeeman 1903: B…
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2020) هذه المقالة عن التغير المناخي والصناعة والمجتمع الأنظمة والقطاعات الصحة يتعرض البشر لآثار التغير المناخي بصورة مباشرة من خلال أنماط طقسية متقلبة (كدرجات الحر…
ليغا باسكيت الدرجة الأولى موسم 2017–18 تفاصيل الموسم ليغا باسكيت الدرجة الأولى البلد إيطاليا التاريخ بداية:30 سبتمبر 2017 نهاية:15 يونيو 2018 المنظم دوري كرة السلة الإيطالي [لغات أخرى] البطل أولمبيا ميلانو عدد المشاركين 16 ليغا باسكيت الدرجة الأولى م…
العلاقات الجنوب أفريقية الشمال مقدونية جنوب أفريقيا شمال مقدونيا جنوب أفريقيا شمال مقدونيا تعديل مصدري - تعديل العلاقات الجنوب أفريقية الشمال مقدونية هي العلاقات الثنائية التي تجمع بين جنوب أفريقيا وشمال مقدونيا.[1][2][3][4][5] مقارنة بين ا…
Exemplary or noteworthy book Great Book redirects here. For other uses, see Great Book (disambiguation). Not to be confused with Classical literature. Part of a series onReading Learning to read Reading readiness Vocabulary development Vocabulary learning Scientific theories and models Dual route theory Simple view of reading Science of reading Scarborough's Reading Rope The active view of reading model Cognitive processes Comprehension Phonemic awareness Phonological awareness Subvocalization W…
Non-profit university in Eastern Africa For the university in the African Great Lakes region, see University of East Africa. East Africa UniversityTypeNon-profit institutionEstablished1999Founder Abdulkadir Nur Farah Ahmed Haji Abdirahman ChairmanSheikh Abdulwahid Hashi Hassan BosasoChancellorDr.Adam Sheikhdon AliVice-ChancellorMohamed Mahamud Isse (Admin and Finance) Prof. Abdisalam Issa-Salwe (Academic Affairs)LocationSomalia11°14′32″N 49°12′7″E / 11.24222°N 49.20194…
Cricket series2006–07 Ashes seriesPart of the English cricket team in Australia in 2006–07The logo for the 2006–07 Ashes seriesDate23 November 2006 – 5 January 2007LocationAustraliaResultAustralia won the 5-Test series 5–0Player of the seriesRicky Ponting (Aus)Compton–Miller Medal:Ricky Ponting (Aus)Teams Australia EnglandCaptainsRicky Ponting Andrew FlintoffMost runsRicky Ponting (576)Michael Hussey (458)Matthew Hayden (413) Kevin Pietersen (490)Paul Collingwood (433)Ian …
Zuckerman di San Diego Comic-Con International tahun 2011. Jeremy Zuckerman adalah komposer dan musisi Amerika Serikat yang umumnya dikenal sebagai penyusun musik untuk serial TV Avatar: The Last Airbender dan sekuelnya The Legend of Korra.[1] Ia belajar di Berklee College of Music, Boston, dan Institut Seni California dan telah berkolaborasi dengan musisi seperti David Lee Roth. Referensi ^ Soundtrack.net. Interview with the Track Team at Soundtrack.net. Diakses tanggal 7 April 2008.…
Pour les articles homonymes, voir Vinca. Vinča Винча Vinča vue du ciel Administration Pays Serbie Province Serbie centrale Région ŠumadijaPodunavlje District Ville de Belgrade Municipalité Grocka Code postal 11 351 Démographie Population 6 779 hab. (2011) Géographie Coordonnées 44° 45′ 36″ nord, 20° 37′ 11″ est Localisation Géolocalisation sur la carte : Serbie Vinča Géolocalisation sur la carte : Serbie Vinča modi…
Association football club in Cairo, Egypt This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ittihad El Shorta SC – news · newspapers · books · scholar · JSTOR (November 2013) (Learn how and when to remove this template message) Football clubIttihad El ShortaFull nameIttihad El ShortaFounded1980; 44 years ago (198…
Revolutionary Socialists redirects here. For the Swedish Trotskyist organization of the same name, see Revolutionary Socialists (Sweden, 1987). For the political ideology, see Revolutionary socialism. Political party in Egypt Revolutionary Socialists الاشتراكيون الثوريونal-ištirākiyyūn aṯ-ṯawriyyūnLeaderCollective leadershipFounded1995HeadquartersCenter for Socialist Studies, 7 Mourad Street, Giza Square, Giza, EgyptNewspaperThe SocialistIdeologyRevolutionary socia…
France ÔCaractéristiquesCréation 25 février 2005Disparition 24 août 2020Propriétaire La 1re(France Télévisions)Slogan « Regardons autrement »Format d'image 16/9, 576i (SD), 1080i (HD)Langue FrançaisPays FranceStatut Généraliste nationale publiqueSiège social 35-37, rue Danton92240 MalakoffAncien nom RFO Sat (1998-2005)Chaîne sœur La 1re (9 chaînes), France 2, France 3 (et ses déclinaisons locales), France 4, France 5, France InfoSite web france.tv/france-oDiffusionAna…
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Otoritas Pengembangan Media Informasi dan KomunikasiInformasi lembagaKantor pusat10 Pasir Panjang Road, #03-01, Mapletree Business City, Singapura, 117438Pejabat eksekutifChairmanLembaga indukMinistry of Communications and InformationSitus webwww.imda.go…
Municipality and town in Hidalgo, MexicoTepehuacán de GuerreroMunicipality and townTepehuacán de GuerreroShow map of HidalgoTepehuacán de GuerreroShow map of MexicoCoordinates: 21°0′47″N 98°50′39″W / 21.01306°N 98.84417°W / 21.01306; -98.84417Country MexicoStateHidalgoMunicipal seatTepehuacán de GuerreroArea • Total426.6 km2 (164.7 sq mi)Population (2005) • Total27,240Time zoneUTC-6 (Central) Tepehuacán de …
American musician (1951–2010) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tom Wolk – news · newspapers · books · scholar · JSTOR (July 2022) (Learn how and when to remove this message) Tom T-Bone WolkBackground informationBorn(1951-12-24)December 24, 1951Yonkers, New York, U.S.DiedFebruary 28, 2010(2010-0…