Share to: share facebook share twitter share wa share telegram print page

Transition metal hydride

Transition metal hydrides are chemical compounds containing a transition metal bonded to hydrogen. Most transition metals form hydride complexes and some are significant in various catalytic and synthetic reactions. The term "hydride" is used loosely: some of them are acidic (e.g., H2Fe(CO)4), whereas some others are hydridic, having H-like character (e.g., ZnH2).

Classes of metal hydrides

Binary metal hydrides

Many transition metals form compounds with hydrogen. These materials are called binary hydrides, because they contain only two elements. The hydrogenic ligand is assumed to have hydridic (H-like) character. These compounds are invariably insoluble in all solvents, reflecting their polymeric structures. They often exhibit metal-like electrical conductivity. Many are nonstoichiometric compounds. Electropositive metals (Ti, Zr, Hf, Zn) and some other metals form hydrides with the stoichiometry MH or sometimes MH2 (M = Ti, Zr, Hf, V, Zn). The best studied are the binary hydrides of palladium, which readily forms a limiting monohydride. In fact, hydrogen gas diffuses through Pd windows via the intermediacy of PdH.[1]

Structure of the ReH2−
9
anion in the salt K2ReH9.[2]

Ternary metal hydrides

Ternary metal hydrides have the formula AxMHn, where A+ is an alkali or alkaline earth metal cation, e.g. K+ and Mg2+. A celebrated example is K2ReH9, a salt containing two K+ ions and the ReH92− anion. Other homoleptic metal hydrides include the anions in Mg2FeH6 and Mg2NiH4. Some of these anionic polyhydrides satisfy the 18-electron rule, many do not. Because of their high lattice energy, these salts are typically not soluble in any solvents, a well known exception being K2ReH9.[3]

Coordination complexes

The most prevalent hydrides of the transition metals are metal complexes that contain a mix of ligands in addition to hydride. The range of coligands is large. Virtually all of the metals form such derivatives. The main exceptions include the late metals silver, gold, cadmium, and mercury, which form few or unstable complexes with direct M-H bonds. Examples of an industrially useful hydrides are HCo(CO)4 and HRh(CO)(PPh3)3, which are catalysts for hydroformylation.

HFeCl(dppe)2 is one of the most accessible transition metal hydrides.

The first molecular hydrides of the transition metals were first reported in the 1930s by Walter Hieber and coworkers. They described H2Fe(CO)4 and HCo(CO)4. After a hiatus of several years, and following the release of German war documents on the postulated role of HCo(CO)4 in hydroformylation, several new hydrides were reported in the mid-1950s by three prominent groups in organometallic chemistry: HRe(C5H5)2 by Geoffrey Wilkinson, HMo(C5H5)(CO)3 by E. O. Fischer, and HPtCl(PEt3)2 by Joseph Chatt.[4] Thousands of such compounds are now known.

Cluster hydrides

Like hydrido coordination complexes, many clusters feature terminal (bound by one M–H bond) hydride ligands. Hydride ligands can also bridge pairs of metals, as illustrated by [HW2(CO)10]. The cluster H2Os3(CO)10 features both terminal and doubly bridging hydride ligands. Hydrides can also span the triangular face of a cluster as in [Ag3{(PPh2)2CH2}33-H)(μ3-Cl)]BF4.[5] In the cluster [Co6H(CO)15], the hydride is "interstitial", occupying a position at the center of the Co6 octahedron. The assignment for cluster hydrides can be challenging as illustrated by studies on Stryker's reagent [Cu6(PPh3)6H6].[6]

Synthesis

Hydride transfer

Nucleophilic main group hydrides convert many transition metal halides and cations into the corresponding hydrides:

MLnX + LiBHEt3 → HMLn + BEt3 + LiX

These conversions are metathesis reactions, and the hydricity of the product is generally less than of the hydride donor. Classical (and relatively cheap) hydride donor reagents include sodium borohydride and lithium aluminium hydride. In the laboratory, more control is often offered by "mixed hydrides" such as lithium triethylborohydride and Red-Al. Alkali metal hydrides, e.g. sodium hydride, are not typically useful reagents.

Elimination reactions

Beta-hydride elimination and alpha-hydride elimination are processes that afford hydrides. The former a common termination pathway in homogeneous polymerization. It also allows some transition metal hydride complexes to be synthesized from organolithium and Grignard reagents:

MLnX + LiC4H9 → C4H9MLn + LiX
C4H9MLn → HMLn + H
2
C=CHC
2
H
5

Oxidative additions

Oxidative addition of dihydrogen to a low valent transition metal center is common. Several metals react directly with H2, though usually heat to a few hundred degrees is required. One example is titanium dihydride, which forms when titanium sponge is heated to 400-700 °C under an atmosphere of hydrogen. These reactions typically require high surface area metals. The direct reaction of metals with H2 is a step in catalytic hydrogenation.

For solutions, classic example involves Vaska's complex:[7]

IrICl(CO)(PPh3)2 + H2 ⇌ H2IrIIICl(CO)(PPh3)2

Oxidative addition also can occur to dimetallic complexes, e.g.:

Co
2
(CO)
8
+ H2 ⇌ 2 HCo(CO)4

Many acids participate in oxidative additions, as illustrated by the addition of HCl to Vaska's complex:

IrICl(CO)(PPh3)2 + HCl → HIrIIICl2(CO)(PPh3)2

Heterolytic cleavage of dihydrogen

Some metal hydrides form when a metal complex is treated with hydrogen in the presence of a base. The reaction involves no changes in the oxidation state of the metal and can be viewed as splitting H2 into hydride (which binds to the metal) and proton (which binds to the base).

MLnx+ + base + H2 ⇌ HMLn(x-1)+ + Hbase+

Such reaction are assumed to involve the intermediacy of dihydrogen complexes. Bifunctional catalysts activate H2 in this way.

Molybdocene dihydride is produced using NaBH4 as the hydride source

Thermodynamic considerations

Some M-H Bond Dissociation Energies and pKa's of 18e Metal Hydrides(MeCN solution)[8]
Metal hydride complex BDE (kJ/mol) pKa
H-CpCr(CO)3 257 13.3
H-CpMo(CO)3 290 13.9
H-CpW(CO)3 303 16.1
H-Mn(CO)5 285 14.1
H-Re(CO)5 313 21.1
H-FeH(CO)4 283 11.4
H-CpFe(CO)2 239 19.4
H-CpRu(CO)2 272 20.2
H-Co(CO)4 278 8.3

The values shift by <6 kJ/mol upon substitution of CO by a phosphine ligand.

The M-H bond can in principle cleave to produce a proton, hydrogen radical, or hydride.[9]

HMLn ⇌ MLn + H+
HMLn ⇌ MLn + H
HMLn ⇌ MLn+ + H

Although these properties are interrelated, they are not interdependent. A metal hydride can be a thermodynamically a weak acid and a weak H donor; it could also be strong in one category but not the other or strong in both. The H strength of a hydride also known as its hydride donor ability or hydricity corresponds to the hydride's Lewis base strength. Not all hydrides are powerful Lewis bases. The base strength of hydrides vary as much as the pKa of protons. This hydricity can be measured by heterolytic cleaving hydrogen between a metal complex and base with a known pKa then measuring the resulting equilibrium. This presupposes that the hydride doesn't heterolytically or homolytically react with itself to reform hydrogen. A complex would homolytically react with itself if the homolytic M-H bond is worth less than half of the homolytic H-H bond. Even if the homolytic bond strength is above that threshold the complex is still susceptible to radical reaction pathways.

2 HMLnz ⇌ 2 MLnz + H2

A complex will heterolytically react with itself when its simultaneously a strong acid and a strong hydride. This conversion results in disproportionation producing a pair of complexes with oxidation states that differ by two electrons. Further electrochemical reactions are possible.

2HMLnz ⇌ MLnz+1 + MLnz-1 + H2

As noted some complexes heterolytically cleave dihydrogen in the presence of a base. A portion of these complexes result in hydride complexes acidic enough to be deprotonated a second time by the base. In this situation the starting complex can be reduced by two electrons with hydrogen and base. Even if the hydride is not acidic enough to be deprotonated it can homolytically react with itself as discussed above for an overall one electron reduction.

Two deprotonations: MLnz + H2 + 2Base ⇌ MLnz-2 + 2H+base
Deprotonation followed by homolysis: 2MLnz + H2 + 2base ⇌ 2MLnz-1 + 2H+Base

Hydricity

The affinity for a hydride ligand for a Lewis acid is called its hydricity:

MLnHn− ⇌ MLn(n+1)− + H

Since hydride does not exist as a stable anion in solution, this equilibrium constant (and its associated free energy) are calculated from measurable equilibria. The reference point is the hydricity of a proton, which in acetonitrile solution is calculated at −76 kcal mol−1:[10]

H+ + H ⇌ H2 ΔG298 = −76 kcal mol−1

Relative to a proton, most cations exhibit a lower affinity for H. Some examples include:

[Ni(dppe)2]2+ + H ⇌ [HNi(dppe)2]+ ΔG298 = −63 kcal mol−1
[Ni(dmpe)2]2+ + H ⇌ [HNi(dmpe)2]+ ΔG298 = −50.7 kcal mol−1
[Pt(dppe)2]2+ + H ⇌ [HPt(dppe)2]+ ΔG298 = −53 kcal mol−1
[Pt(dmpe)2]2+ + H ⇌ [HPt(dmpe)2]+ ΔG298 = −42.6 kcal mol−1

These data suggest that [HPt(dmpe)2]+ would be a strong hydride donor, reflecting the relatively high stability of [Pt(dmpe)2]2+.[11]

Kinetics and mechanism

The rates of proton-transfer to and between metal complexes are often slow.[12] Many hydrides are inaccessible to study through Bordwell thermodynamic cycles. As a result, kinetic studies are employed to elucidate both the relevant thermodynamic parameters. Generally hydrides derived from first row transition metals display the most rapid kinetics followed by the second and third row metal complexes.

Structure and bonding

The determination of structures of metal hydrides can be challenging since hydride ligands do not scatter X-ray well, especially in comparison to the attached metal. Consequently M-H distances are often underestimated, especially in early studies. Often the presence of a hydride ligand was deduced by the absence of a ligand at an apparent coordination site. Classically, the structures of metal hydrides was addressed by neutron diffraction since hydrogen strongly scatters neutrons.[13]

Metal complexes containing terminal hydrides are common. In bi- and polynuclear compounds, hydrides usually are bridging ligands. Of these bridging hydrides many are oligomeric, such as Stryker's reagent.[14] [(Ph3P)CuH]6 and clusters such as [Rh6(PR3)6H12]2+.[15] The final bonding motif is the non-classical dihydride also known as sigma bond dihydrogen adducts or simply dihydrogen complexes. The [W(PR3)2(CO)3(H2)] complex was the first well characterized example of both a non-classical dihydride and sigma-bond complex in general.[16][17] X-ray diffraction is generally insufficient to locate hydrides in crystal structures and thus their location must be assumed. It requires Neutron diffraction to unambiguously locate a hydride near a heavy atom crystallographically. Non-classical hydrides have also been studied with a variety of variable temperature NMR techniques and HD Couplings.

Classical terminal: M—H
Classical bridging: M—H—M
nonclassical: M—H2

Spectroscopy

Late transition metal hydrides characteristically show up-field shifts in their proton NMR spectra. It is common for the M-H signal to appear between δ-5 and -25 with many examples outside this range but generally all appear below 0 ppm. The large shifts arise from the influence of the excited states and due to strong spin-orbit coupling [18] (in contrast, 1H NMR shifts for organic compounds typically occur in the range δ12-1). At one extreme is the 16e complex IrHCl2(PMe(t-Bu)2)2 with a shift of -50.5. The signals often exhibit spin-spin coupling to other ligands, e.g. phosphines.[19]

Metal hydrides exhibit IR bands near 2000 cm−1 for νM-H, although the intensities are variable.[4] These signals can be identified by deuterium labeling.

History

An ill-defined copper hydride had been described in the 1844 as resulting from treatment of copper salts with hypophosphorous acid. It was subsequently found that hydrogen gas was absorbed by mixtures of transition metal salts and Grignard reagents.[20]

The first well defined metal hydrido complex was H2Fe(CO)4, obtained by the low temperature protonation of an iron carbonyl anion. The next reported hydride complex was (C5H5)2ReH. The latter complex was characterized by NMR spectroscopy, which demonstrated the utility of this technique in the study of metal hydride complexes.[20] In 1957, Joseph Chatt, Bernard L. Shaw, and L. A. Duncanson described trans-PtHCl(PEt3)2 the first non-organometallic hydride (i.e., lacking a metal-carbon bond). It was shown to be air-stable, correcting long-held prejudice that metal hydrides would be unstable.[21]

References

  1. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  2. ^ Abrahams, S. C.; Ginsberg, A. P.; Knox, K. (1964). "Transition Metal-Hydrogen Compounds. II. The Crystal and Molecular Structure of Potassium Rhenium Hydride, K2ReH9". Inorg. Chem. 3 (4): 558–567. doi:10.1021/ic50014a026.
  3. ^ King, R.B. (2000). "Structure and bonding in homoleptic transition metal hydride anions". Coordination Chemistry Reviews. 200–202: 813–829. doi:10.1016/S0010-8545(00)00263-0.
  4. ^ a b Kaesz, H. D.; R. B. Saillant (1972-06-01). "Hydride complexes of the transition metals". Chemical Reviews. 72 (3): 231–281. doi:10.1021/cr60277a003.
  5. ^ Zavras, Athanasios; Khairallah, George N.; Connell, Timothy U.; White, Jonathan M.; Edwards, Alison J.; Donnelly, Paul S.; O'Hair, Richard A. J. (2013-08-05). "Synthesis, Structure and Gas-Phase Reactivity of a Silver Hydride Complex [Ag3{(PPh2)2CH2}3(μ3-H)(μ3-Cl)]BF4". Angewandte Chemie. 125 (32): 8549–8552. doi:10.1002/ange.201302436. ISSN 1521-3757.
  6. ^ Bennett, Elliot L.; Murphy, Patrick J.; Imberti, Silvia; Parker, Stewart F. (2014-03-17). "Characterization of the Hydrides in Stryker's Reagent: [HCu{P(C6H5)3}]6". Inorganic Chemistry. 53 (6): 2963–2967. doi:10.1021/ic402736t. ISSN 0020-1669. PMID 24571368.
  7. ^ Hartwig, J. F. Organotransition Metal Chemistry, from Bonding to Catalysis; University Science Books: New York, 2010. ISBN 1-891389-53-X
  8. ^ Tilset, M. (2007). "Organometallic Electrochemistry: Thermodynamics of Metal–Ligand Bonding". Comprehensive Organometallic Chemistry III. pp. 279–305. doi:10.1016/B0-08-045047-4/00012-1. ISBN 978-0-08-045047-6.
  9. ^ Rakowski DuBois, M.; DuBois, D. L. (2009). "The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation". Chem. Soc. Rev. 38 (1): 62–72. doi:10.1039/b801197b. PMID 19088965.
  10. ^ Wayner, Danial D. M.; Parker, Vernon D. (1993). "Bond Energies in Solution from Electrode Potentials and Thermochemical Cycles. A Simplified and General Approach". Accounts of Chemical Research. 26 (5): 287–294. doi:10.1021/ar00029a010.
  11. ^ M Tilset "Organometallic Electrochemistry: Thermodynamics of Metal–Ligand Bonding" in Comprehensive Organometallic Chemistry III, Eds Crabtree, R. H.; Mingos, D. M. P. 2007 Elsevier. ISBN 9780080445915
  12. ^ K. W. Kramarz, J. R. Norton (2007). "Slow Proton-Transfer Reactions in Organometallic and Bioinorganic Chemistry". In Kenneth D. Karlin (ed.). Progress in Inorganic Chemistry. Vol. 42. Wiley. pp. 1–65. ISBN 978-0-470-16643-7.[permanent dead link]
  13. ^ Bau, R.; Drabnis, M. H. (1997). "Structures of Transition Metal Hydrides Determined by Neutron Diffraction". Inorganica Chimica Acta. 259 (1–2): 27–50. doi:10.1016/S0020-1693(97)89125-6.
  14. ^ Chiu, Pauline; Zhengning Li; Kelvin C.M. Fung (January 2003). "An expedient preparation of Stryker's reagent". Tetrahedron Letters. 44 (3): 455–457. doi:10.1016/S0040-4039(02)02609-6. Retrieved 2009-04-17.
  15. ^ Brayshaw, S.; Harrison, A.; McIndoe, J.; Marken, F.; Raithby, P.; Warren, J.; Weller, A. (2007). "Sequential Reduction of High Hydride Count Octahedral Rhodium Clusters [Rh6(PR3)6H12][BArF4]2: Redox-Switchable Hydrogen Storage". J. Am. Chem. Soc. 129 (6): 1793–1804. doi:10.1021/ja066940m. PMID 17284009.
  16. ^ Kubas, G. J.; R. R. Ryan; B. I. Swanson; P. J. Vergamini; H. J. Wasserman (1984-01-01). "Characterization of the first examples of isolable molecular hydrogen complexes, M(CO)3(PR3)2(H2) (M = molybdenum or tungsten; R = Cy or isopropyl). Evidence for a side-on bonded dihydrogen ligand". Journal of the American Chemical Society. 106 (2): 451–452. doi:10.1021/ja00314a049.
  17. ^ Kubas, Gregory J. (2001-08-31). Metal Dihydrogen and -Bond Complexes - Structure, Theory, and Reactivity (1 ed.). Springer. ISBN 978-0-306-46465-2.
  18. ^ Hrobarik, P.; Hrobarikova, V.; Meier, F.; Repisky, M.; Komorovsky, S.; Kaupp, M. (2011). "Relativistic Four-Component DFT Calculations of 1H NMR Chemical Shifts in Transition-Metal Hydride Complexes: Unusual High-Field Shifts Beyond the Buckingham–Stephens Model". Journal of Physical Chemistry A. 115 (22): 5654–5659. Bibcode:2011JPCA..115.5654H. doi:10.1021/jp202327z. PMID 21591659.
  19. ^ J. W. Akitt in "Multinuclear NMR" Joan Mason (Editor), 1987, Plenum Press. ISBN 0-306-42153-4
  20. ^ a b Joseph Chatt (1968). "Hydride Complexes". Science. 160 (3829): 723–729. Bibcode:1968Sci...160..723C. doi:10.1126/science.160.3829.723. PMID 17784306. S2CID 22350909.
  21. ^ J. Chatt; L. A. Duncanson; B. L. Shaw (1957). "A Volatile Chlorohydride of Platinum". Proc. Chem. Soc.: 329–368. doi:10.1039/PS9570000329.

Read other articles:

Disambiguazione – Se stai cercando altri significati, vedi Avezzano (disambigua). Avezzanocomune (dettagli) Avezzano – VedutaVeduta di Avezzano dal monte Salviano LocalizzazioneStato Italia Regione Abruzzo Provincia L'Aquila AmministrazioneSindacoGiovanni Di Pangrazio[1] (Indipendente) dal 9-10-2020 TerritorioCoordinate42°01′51.51″N 13°25′34.94″E / 42.030975°N 13.426372°E42.030975; 13.426372 (Avezzano)Coordinate: 42°01′51.51…

Batugamping yang merupakan salah satu jenis dari batu karbonat Batuan karbonat adalah batuan dengan kandungan material karbonat lebih dari 50% yang tersusun atas partikel karbonat klastik yang tersemenkan. Batuan karbonat tidak hanya terdiri atas gamping namun juga termasuk batuan lain yang memiliki kandungan karbonat berupa mineral karbonat lebih dari 50%. Batu karbonat pasti akan mengalami proses diagenesis. Proses diagenesis merupakan perubahan yang terjadi pada sedimen secara alami, sejak pr…

Craig MannLahirOakville, OntarioAlmamaterFanshawe CollegePekerjaanPenata rekaman ulangTahun aktif1998-sekarang Craig Mann adalah seorang penata rekaman ulang asal Kanada.[1] Ia berkarya pada lebih dari 110 film sejak 1998. Filmografi pilihan Whiplash (2014)[2] Uttama Villain (2015) Referensi ^ Craig Mann. Diarsipkan dari versi asli tanggal 2018-01-23. Diakses tanggal January 18, 2015.  ^ 87th Academy Awards. Diakses tanggal January 15, 2015.  Pranala luar Craig Man…

artikel ini tidak memiliki pranala ke artikel lain. Tidak ada alasan yang diberikan. Bantu kami untuk mengembangkannya dengan memberikan pranala ke artikel lain secukupnya. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) artikel ini perlu dirapikan agar memenuhi standar Wikipedia. Tidak ada alasan yang diberikan. Silakan kembangkan artikel ini semampu Anda. Merapikan artikel dapat dilakukan dengan wikifikasi atau membagi artikel ke paragraf-paragraf. Jika sudah dirapikan, sil…

Bagian dari seri tentangSejarah Prancis Pra-sejarah Paleolitikum Mesolitikum Neolitikum Zaman Tembaga Zaman Perunggu Zaman Besi Zaman kuno Koloni Yunani Galia Kelt Galia Romawi Zaman Pertengahan Awal Franka (481–843) - Francia Barat (843–987) Merovingia (481–751) Karolingia (751–987) Abad Pertengahan Kerajaan Prancis (987–1498) Wangsa Kapetia (987–1328) Wangsa Valois (1328–1498) Modern awal Kerajaan Prancis (1492–1791) Valois-Orléans (1498–1…

The following is a list of Playboy Playmates of 1990. Playboy magazine names its Playmate of the Month each month throughout the year. January Peggy McIntaggartPeggy McIntaggart in 2007Personal detailsBorn (1961-09-06) September 6, 1961 (age 62)Penetanguishene, OntarioHeight5 ft 7 in (1.70 m) Peggy McIntaggart (also known as Peggy Sands and Peggy Sanders) (born September 6, 1961, Penetanguishene, Ontario) is a Canadian model, actress, photographer and stylist who was Playboy'…

فولا Βούλα Voula    خريطة الموقع تقسيم إداري البلد اليونان[1] المنطقة الإدارية أتيكا آتيكا الشرقية خصائص جغرافية إحداثيات 37°50′39″N 23°46′15″E / 37.8441°N 23.7708°E / 37.8441; 23.7708   الأرض 8.787 كم² الارتفاع 350 متر  السكان التعداد السكاني 31,078 نسمة (إحصاء 2005) الكثافة السكا…

Holy site in Bethlehem This article is about the burial place of Rachel and of the Bilal bin Rabah mosque. For the companion of Muhammad, see Bilal bin Rabah. Tomb of RachelKever Rachel (Hebrew); Qabr Raheel (Arabic)Top: Rachel's Tomb and adjacent Islamic cemetery in the early 20th century, prior to the building of the modern Israeli fortification structureBottom: Sarcophagus with a parochet coveringShown within State of PalestineLocationnear Bethlehem[1]RegionWest BankCoordinates31°43…

Voce principale: Società Sportiva Milazzo. S.S. MilazzoStagione 2012-2013Sport calcio Squadra Milazzo Allenatore Marco Tosi, Francesco Tudisco Presidente Giuseppe Peditto Lega Pro Seconda Divisione18º posto, girone A, retrocesso 2011-2012 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti la Società Sportiva Milazzo nelle competizioni ufficiali della stagione 2012-2013. Indice 1 Stagione 2 Rosa 3 Risultati 3.1 Campionato 3.1.1 Girone di andata 3.1.2 …

Landlocked country in West Africa Not to be confused with Malawi or Bali. This article is about the country in West Africa. For other uses, see Mali (disambiguation). Republic of Mali Official names Bambara:Mali ka FasojamanaFula:Republik bu MaaliHassaniya:جُمْهُورِيَّةْ مَالِي (Jumhūriyyet Māli)Soninke:Mali TɔgɔbaduguTamasheq:ⵜⴰⴳⴷⵓⴷⴰ ⵏ ⵎⴰⵍⵉ (Tagduda n Mali) Flag Coat of arms Motto: Un peuple, un but, une foi (French)One people, one goal,…

Bupati KlatenBERSINAR - Bersih, Sehat, Indah, Nyaman, Aman, RapiPetahanaSri Mulyanisejak 26 Februari 2021KediamanRumah Dinas Bupati Kabupaten KlatenMasa jabatan5 tahunSitus webklatenkab.go.id Berikut ini adalah daftar Bupati Klaten yang pernah menjabat sejak tahun 1932 hingga saat ini.[1][2] No Bupati Mulai Jabatan Akhir Jabatan Prd. Wakil Bupati Ket. 1 R.T. Mangoendilogo 1852 2 R.T. Soerodirjo 1852 1860 3 R.T. Citrodipoero 1860 1867 4 R.T. Mangoendilogo 1867 1870 5 R.M. T. …

Argentine footballer (born 1987) Claudio Yacob Yacob playing for West Bromwich Albion in 2012Personal informationFull name Claudio Ariel Yacob[1]Date of birth (1987-07-18) 18 July 1987 (age 36)Place of birth Carcarañá, ArgentinaHeight 1.81 m (5 ft 11 in)[2]Position(s) Defensive midfielderYouth career2001–2006 Racing ClubSenior career*Years Team Apps (Gls)2006–2012 Racing Club 144 (7)2012–2018 West Bromwich Albion 160 (2)2018–2020 Nottingham Forest 16…

Billy BushBerkas:Billy Bush.jpgLahirWilliam Hall Bush13 Oktober 1971 (umur 52)[1]Tempat tinggalLos Angeles, California, USAPendidikanColby CollegePekerjaanPembawa acara Access Hollywood (TV)Pembawa acaraThe Billy Bush Show (radio)Suami/istriSydney Davis ​(m. 1998)​AnakJosie, Mary Bradley, and LillieOrang tuaJonathan Bush dan Josephine BushSitus webhttp://billybushshow.com William Hall Billy Bush (lahir 13 Oktober 1971) adalah seorang pembawa acara telev…

Cumulus castellanusCumulus castellanus low on the horizonAppearanceFlat on the bottom, though has multiple towers on topPrecipitationUsually, but not always Cumulus castellanus (from Latin castellanus, castle) is an unofficial name of a species of cumulus cloud that is distinctive because it displays multiple towers arising from its top, indicating significant vertical air movement. It is a misnomer for cumulus congestus and correspondingly can be an indicator of forthcoming showers and thunders…

Genealogy software This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: GeneWeb – news · newspapers · books · scholar · JSTOR (September 2011) (Learn how and when to remove this message) GeneWeb welcome pageDeveloper(s)Daniel de Rauglaudre[1]Initial release1998; 26 years ago (1998)Stable re…

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Huzurabad – news · newspapers · books · scholar · JSTOR (May 2022) (Learn how and when to remove this message) Town in Telangana, IndiaHuzurabadTownHuzurabadLocation in Telangana, IndiaShow map of TelanganaHuzurabadHuzurabad (India)Show map of IndiaCoordinates: 18…

American Catholic episcopal conference United States Conference of Catholic BishopsAbbreviationUSCCBFormation1966TypeNon-governmental organizationLegal statusCivil nonprofitPurposeTo act collaboratively and consistently on vital issues confronting the Church and society.To foster communion with the Church in other nations, within the Church universal, under the leadership of its supreme pastor, the Roman Pontiff.To offer appropriate assistance to each bishop in fulfilling his particular ministry…

Pour les articles homonymes, voir Miguel López et López. Miguel López de LegazpiFonctionGouverneur général des Philippines27 avril 1566 - 20 août 1572Guido de LavezarisBiographieNaissance 1502Zumarraga (Pays basque)Décès 20 août 1572Manille (Capitainerie générale des Philippines, Empire espagnol)Sépulture Église San AgustinAllégeance Empire espagnolFormation Université de SalamanqueActivités Explorateur, homme politique, militaire, conquistadorPériode d'activité à partir de 15…

Location of Greene County in Tennessee This is a list of the National Register of Historic Places listings in Greene County, Tennessee. This is intended to be a complete list of the properties and districts on the National Register of Historic Places in Greene County, Tennessee, United States. Latitude and longitude coordinates are provided for many National Register properties and districts; these locations may be seen together in a map.[1] There are 17 properties and districts listed o…

4e session du Comité du patrimoine mondial Type Session Édition 4e Pays France Localisation Paris Organisateur Comité du patrimoine mondial Date Du 1er septembre 1980 au 5 septembre 1980 Site web whc.unesco.org/fr/sessions/04COM 3e session 1re session extraordinaire modifier  La 4e session du Comité du patrimoine mondial a eu lieu du 1er septembre 1980 au 5 septembre 1980 à Paris, en France. Participants Les membres du comité du patrimoine mondial sont représenté…

Kembali kehalaman sebelumnya