Share to: share facebook share twitter share wa share telegram print page

Unique factorization domain

In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain (a nontrivial commutative ring in which the product of any two non-zero elements is non-zero) in which every non-zero non-unit element can be written as a product of irreducible elements, uniquely up to order and units.

Important examples of UFDs are the integers and polynomial rings in one or more variables with coefficients coming from the integers or from a field.

Unique factorization domains appear in the following chain of class inclusions:

rngsringscommutative ringsintegral domainsintegrally closed domainsGCD domainsunique factorization domainsprincipal ideal domainsEuclidean domainsfieldsalgebraically closed fields

Definition

Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero element x of R can be written as a product of a unit u and zero or more irreducible elements pi of R:

x = u p1 p2 ⋅⋅⋅ pn with n ≥ 0

and this representation is unique in the following sense: If q1, ..., qm are irreducible elements of R and w is a unit such that

x = w q1 q2 ⋅⋅⋅ qm with m ≥ 0,

then m = n, and there exists a bijective map φ : {1, ..., n} → {1, ..., m} such that pi is associated to qφ(i) for i ∈ {1, ..., n}.

Examples

Most rings familiar from elementary mathematics are UFDs:

  • All principal ideal domains, hence all Euclidean domains, are UFDs. In particular, the integers (also see Fundamental theorem of arithmetic), the Gaussian integers and the Eisenstein integers are UFDs.
  • If R is a UFD, then so is R[X], the ring of polynomials with coefficients in R. Unless R is a field, R[X] is not a principal ideal domain. By induction, a polynomial ring in any number of variables over any UFD (and in particular over a field or over the integers) is a UFD.
  • The formal power series ring K[[X1, ..., Xn]] over a field K (or more generally over a regular UFD such as a PID) is a UFD. On the other hand, the formal power series ring over a UFD need not be a UFD, even if the UFD is local. For example, if R is the localization of k[x, y, z]/(x2 + y3 + z7) at the prime ideal (x, y, z) then R is a local ring that is a UFD, but the formal power series ring R[[X]] over R is not a UFD.
  • The Auslander–Buchsbaum theorem states that every regular local ring is a UFD.
  • is a UFD for all integers 1 ≤ n ≤ 22, but not for n = 23.
  • Mori showed that if the completion of a Zariski ring, such as a Noetherian local ring, is a UFD, then the ring is a UFD.[1] The converse of this is not true: there are Noetherian local rings that are UFDs but whose completions are not. The question of when this happens is rather subtle: for example, for the localization of k[x, y, z]/(x2 + y3 + z5) at the prime ideal (x, y, z), both the local ring and its completion are UFDs, but in the apparently similar example of the localization of k[x, y, z]/(x2 + y3 + z7) at the prime ideal (x, y, z) the local ring is a UFD but its completion is not.
  • Let be a field of any characteristic other than 2. Klein and Nagata showed that the ring R[X1, ..., Xn]/Q is a UFD whenever Q is a nonsingular quadratic form in the Xs and n is at least 5. When n = 4, the ring need not be a UFD. For example, R[X, Y, Z, W]/(XYZW) is not a UFD, because the element XY equals the element ZW so that XY and ZW are two different factorizations of the same element into irreducibles.
  • The ring Q[x, y]/(x2 + 2y2 + 1) is a UFD, but the ring Q(i)[x, y]/(x2 + 2y2 + 1) is not. On the other hand, The ring Q[x, y]/(x2 + y2 − 1) is not a UFD, but the ring Q(i)[x, y]/(x2 + y2 − 1) is.[2] Similarly the coordinate ring R[X, Y, Z]/(X2 + Y2 + Z2 − 1) of the 2-dimensional real sphere is a UFD, but the coordinate ring C[X, Y, Z]/(X2 + Y2 + Z2 − 1) of the complex sphere is not.
  • Suppose that the variables Xi are given weights wi, and F(X1, ..., Xn) is a homogeneous polynomial of weight w. Then if c is coprime to w and R is a UFD and either every finitely generated projective module over R is free or c is 1 mod w, the ring R[X1, ..., Xn, Z]/(ZcF(X1, ..., Xn)) is a UFD.[3]

Non-examples

  • The quadratic integer ring of all complex numbers of the form , where a and b are integers, is not a UFD because 6 factors as both 2×3 and as . These truly are different factorizations, because the only units in this ring are 1 and −1; thus, none of 2, 3, , and are associate. It is not hard to show that all four factors are irreducible as well, though this may not be obvious.[4] See also Algebraic integer.
  • For a square-free positive integer d, the ring of integers of will fail to be a UFD unless d is a Heegner number.
  • The ring of formal power series over the complex numbers is a UFD, but the subring of those that converge everywhere, in other words the ring of entire functions in a single complex variable, is not a UFD, since there exist entire functions with an infinity of zeros, and thus an infinity of irreducible factors, while a UFD factorization must be finite, e.g.:

Properties

Some concepts defined for integers can be generalized to UFDs:

  • In UFDs, every irreducible element is prime. (In any integral domain, every prime element is irreducible, but the converse does not always hold. For instance, the element zK[x, y, z]/(z2xy) is irreducible, but not prime.) Note that this has a partial converse: a domain satisfying the ACCP is a UFD if and only if every irreducible element is prime.
  • Any two elements of a UFD have a greatest common divisor and a least common multiple. Here, a greatest common divisor of a and b is an element d that divides both a and b, and such that every other common divisor of a and b divides d. All greatest common divisors of a and b are associated.
  • Any UFD is integrally closed. In other words, if R is a UFD with quotient field K, and if an element k in K is a root of a monic polynomial with coefficients in R, then k is an element of R.
  • Let S be a multiplicatively closed subset of a UFD A. Then the localization S−1A is a UFD. A partial converse to this also holds; see below.

Equivalent conditions for a ring to be a UFD

A Noetherian integral domain is a UFD if and only if every height 1 prime ideal is principal (a proof is given at the end). Also, a Dedekind domain is a UFD if and only if its ideal class group is trivial. In this case, it is in fact a principal ideal domain.

In general, for an integral domain A, the following conditions are equivalent:

  1. A is a UFD.
  2. Every nonzero prime ideal of A contains a prime element.[5]
  3. A satisfies ascending chain condition on principal ideals (ACCP), and the localization S−1A is a UFD, where S is a multiplicatively closed subset of A generated by prime elements. (Nagata criterion)
  4. A satisfies ACCP and every irreducible is prime.
  5. A is atomic and every irreducible is prime.
  6. A is a GCD domain satisfying ACCP.
  7. A is a Schreier domain,[6] and atomic.
  8. A is a pre-Schreier domain and atomic.
  9. A has a divisor theory in which every divisor is principal.
  10. A is a Krull domain in which every divisorial ideal is principal (in fact, this is the definition of UFD in Bourbaki.)
  11. A is a Krull domain and every prime ideal of height 1 is principal.[7]

In practice, (2) and (3) are the most useful conditions to check. For example, it follows immediately from (2) that a PID is a UFD, since every prime ideal is generated by a prime element in a PID.

For another example, consider a Noetherian integral domain in which every height one prime ideal is principal. Since every prime ideal has finite height, it contains a height one prime ideal (induction on height) that is principal. By (2), the ring is a UFD.

See also

Citations

  1. ^ Bourbaki (1972), 7.3, no 6, Proposition 4
  2. ^ Samuel (1964), p. 35
  3. ^ Samuel (1964), p. 31
  4. ^ Artin (2011), p. 360
  5. ^ Kaplansky
  6. ^ A Schreier domain is an integrally closed integral domain where, whenever x divides yz, x can be written as x = x1 x2 so that x1 divides y and x2 divides z. In particular, a GCD domain is a Schreier domain
  7. ^ Bourbaki (1972), 7.3, no 2, Theorem 1.

References

  • Artin, Michael (2011). Algebra. Prentice Hall. ISBN 978-0-13-241377-0.
  • Bourbaki, N. (1972). Commutative algebra. Paris, Hermann; Reading, Mass., Addison-Wesley Pub. Co. ISBN 9780201006445.
  • Hartley, B.; T.O. Hawkes (1970). Rings, modules and linear algebra. Chapman and Hall. ISBN 0-412-09810-5. Chap. 4.
  • Lang, Serge (1993), Algebra (Third ed.), Reading, Mass.: Addison-Wesley, ISBN 978-0-201-55540-0, Zbl 0848.13001 Chapter II.5
  • David Sharpe (1987). Rings and factorization. Cambridge University Press. ISBN 0-521-33718-6.
  • Samuel, Pierre (1964), Murthy, M. Pavman (ed.), Lectures on unique factorization domains, Tata Institute of Fundamental Research Lectures on Mathematics, vol. 30, Bombay: Tata Institute of Fundamental Research, MR 0214579
  • Samuel, Pierre (1968). "Unique factorization". The American Mathematical Monthly. 75 (9): 945–952. doi:10.2307/2315529. ISSN 0002-9890. JSTOR 2315529.
Read more information:

Polytechnic in Ibadan, Nigeria The Polytechnic, IbadanIse loogun iseTypePublic polytechnicEstablished1970RectorProf. Kazeem A. AdebiyiLocationIbadan, NigeriaCampusUrbanWebsitewww.polyibadan.edu.ng The Polytechnic, Ibadan Entrance Gate The Polytechnic, Ibadan Exit Gate The Polytechnic, Ibadan The Polytechnic, Ibadan (also called Poly Ibadan) is an institution of higher learning in Ibadan in Oyo State, Nigeria.[1] Founded on August 1970, Poly Ibadan is similar to other polytechnics in Nige…

Elegant Yokai Apartment Life妖怪アパートの幽雅な日常(Yōkai Apāto no Yūga na Nichijō)GenreSupernatural Novel ringanPengarangHinowa KōzukiPenerbitKodanshaImprintYA!ENTERTAINMENTTerbitOktober 2003 – Agustus 2013Volume11 MangaPengarangHinowa KōzukiIlustratorWaka MiyamaPenerbitKodanshaPenerbit bahasa InggrisNA Kodansha USA (digital)MajalahMonthly Shōnen SiriusDemografiShōnenTerbit9 November, 2011 – 26 Agustus, 2021Volume24 Seri animeSutradaraMitsuo HashimotoSkenarioYasunori Ya…

Ada usul agar artikel ini digabungkan dengan Puncak gunung. (Diskusikan) Puncak tertinggi di dunia Puncak adalah bagian paling atas pada gunung. Jika dianalogikan pada segitiga berarti titik sudut yang berhadapan pada garis dasar.[1] Dibandingkan dengan permukaan lainnya, puncak memiliki titik lebih tinggi dari titik yang berbatasan langsung dengannya. Istilah lain yang merujuk pada puncak adalah bagian tertinggi dari sebuah rute atau jalur pendakian. UIAA memberikan batasan puncak gunun…

American actress (born 1982) Jessica BielBiel at the 2013 Cannes Film FestivalBornJessica Claire Biel (1982-03-03) March 3, 1982 (age 42)Ely, Minnesota, U.S.[1]OccupationsActressproducerYears active1991–presentSpouse Justin Timberlake ​(m. 2012)​Children2 Jessica Claire Timberlake (née Biel /biːl/; born March 3, 1982) is an American actress. She has received various accolades, including a Young Artist Award, and nominations for a Primetime Emmy …

Prefektur Vientiane Konurbasi Tempat <mapframe>: Judul Laos/Vientiane Prefecture.map .map bukan merupakan halaman data peta yang sah Negara berdaulatLaos NegaraLaos Pembagian administratifChanthabuly (en) Sikhottabong District (en) Xaysettha (en) Sisattanak District (en) Naxaithong (en) Xaythany (en) Hātsāifǭng (en) Sangthǭng (en) Pākngư̄m (en) GeografiLuas wilayah3.920 km² [convert: unit tak dikenal]Berbatasan denganProvinsi Vientiane Informasi tambahanZona waktuUTC+7 ISO 316…

Greek courtier and painting subject (died 1872) Stieler's portrait of Katerina Botsari Katerina Rosa Botsari (Greek: Κατερίνα Μπότσαρη; 1818/20–1872) was a Greek courtier. She was member of the Souliot Botsaris family. The daughter of Markos Botsaris, she was in the service of Queen Amalia of Greece as well as an admired young woman throughout the European courts - she was immortalised for the 'Gallery of Beauties' of Ludwig I of Bavaria in an 1841 painting by Joseph Stieler. A…

Pour les articles homonymes, voir Jamestown. Cet article est une ébauche concernant une localité de Virginie. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. JamestownGéographiePays Royaume d'AngleterreCommonwealth d'AngleterreRoyaume d'Angleterre Royaume de Grande-Bretagne États-UnisÉtats confédérés d'Amérique États-UnisColonie Treize coloniesColonie Colonie de Virginie (chef-lieu)Coordonn…

English footballer Nathaniel Knight-Percival Knight-Percival playing for Bradford City in 2016Personal informationFull name Nathaniel Lawrence Knight-Percival[1]Date of birth (1987-03-31) 31 March 1987 (age 37)[1]Place of birth Enfield, EnglandHeight 1.83 m (6 ft 0 in)[2]Position(s) Defender; wingerTeam informationCurrent team Tamworth (on loan from Kidderminster Harriers)Number 30Youth career HistonSenior career*Years Team Apps (Gls)2004–2010 Histon…

Vinicio Viani Nazionalità  Italia Calcio Ruolo Attaccante Termine carriera 1951 - giocatore1975 - allenatore Carriera Giovanili 192?-1931 Viareggio Squadre di club1 1931-1933 Viareggio34 (26)1933-1935 Fiorentina51 (27)1935-1936 Lucchese34 (34)1936-1938 Fiorentina42 (18)1938-1942 Livorno99 (67)1942-1943 Napoli31 (16)1943-1944 Spezia VV.FF.5 (1)1945-1946 Benevento? (?)1946-1949 Viareggio102 (50)1949-1951 Massese32 (22) Carriera da allena…

Sole heavy rail-compatible crossing of the San Francisco Bay Dumbarton Rail BridgeThe bridge in 2021.Coordinates37°29′35″N 122°06′59″W / 37.493137°N 122.116478°W / 37.493137; -122.116478Carriedsingle-track railwayCrossedSan Francisco Bay (Newark Slough)Other name(s)Dumbarton Point BridgeDumbarton BridgeNamed forDumbarton PointOwnerSamTrans[1]CharacteristicsDesignPratt through truss with central swing Pennsylvania (Petit) through truss span, timber…

American actor, comedian, director and producer (born 1945) For other people named Henry Winkler, see Henry Winkler (disambiguation). Henry WinklerWinkler at the Raleigh Supercon in 2018BornHenry Franklin Winkler (1945-10-30) October 30, 1945 (age 78)New York City, New York, U.S.EducationEmerson College (BA)Yale School of Drama (MFA)OccupationsActorcomedianauthorproducerdirectorYears active1972–presentWorksList of performancesSpouse Stacey Weitzman ​(m. 1978)&#…

Film festival 4th Berlin International Film FestivalFestival posterLocationWest Berlin, GermanyFounded1951AwardsGolden Bear: Hobson's ChoiceFestival date18–29 June 1954 (1954-06-18 – 1954-06-29)Websitewww.berlinale.deBerlin International Film Festival chronology5th 3rd The 4th annual Berlin International Film Festival was held from 18 to 29 June 1954.[1] This year's festival did not give any official jury prizes, instead awards were given by audience voting. This …

1988 United States Senate election in New Mexico ← 1982 November 8, 1988 1994 →   Nominee Jeff Bingaman Bill Valentine Party Democratic Republican Popular vote 321,983 186,579 Percentage 63.31% 36.68% County resultsBingaman:      50–60%      60–70%      70–80%      80–90%Valentine:      50–60% U.S. senator before election Jeff Bing…

STS-1Peluncuran STS-1Jenis misiPenerbangan uji cobaOperatorNASACOSPAR ID1981-034ASATCAT no.12399Durasi misi2 hari, 6 jam, 20 menit, 53 detikJarak tempuh1.728.000 km (1.074.000 mi)Frekuensi orbit36 Properti wahanaWahana antariksaPesawat Ulang Alik Columbia AwakJumlah awak2AwakJohn W. YoungRobert L. Crippen Awal misiTanggal luncur12 April 1981, 12:00:03 (12 April 1981, 12:00:03) UTCTempat peluncuranKennedy LC-39A Akhir MisiTanggal mendarat14 April 1981,…

Not to be confused with Chouseishin Gransazer. ChouSeiShin SeriesThe official logo of the Chouseishin Series introduced in 2004/2005 during the run of Genseishin JustirisersCreated byToho Company, Ltd. and KonamiFilms and televisionFilm(s)Chousei Kantai Sazer-X the Movie: Fight! Star Warriors (2005)Television seriesChouseishin Gransazer (2003–2004)Genseishin Justirisers (2004–2005)Chousei Kantai Sazer-X (2005–2006)Television special(s)Chouseishin Gransazer: Super Battle Memory (2005)Gensei…

Ця стаття потребує додаткових посилань на джерела для поліпшення її перевірності. Будь ласка, допоможіть удосконалити цю статтю, додавши посилання на надійні (авторитетні) джерела. Зверніться на сторінку обговорення за поясненнями та допоможіть виправити недоліки. Матер…

土库曼斯坦总统土库曼斯坦国徽土库曼斯坦总统旗現任谢尔达尔·别尔德穆哈梅多夫自2022年3月19日官邸阿什哈巴德总统府(Oguzkhan Presidential Palace)機關所在地阿什哈巴德任命者直接选举任期7年,可连选连任首任萨帕尔穆拉特·尼亚佐夫设立1991年10月27日 土库曼斯坦土库曼斯坦政府与政治 国家政府 土库曼斯坦宪法 国旗 国徽 国歌 立法機關(英语:National Council of Turkmenistan) 土…

此条目序言章节没有充分总结全文内容要点。 (2019年3月21日)请考虑扩充序言,清晰概述条目所有重點。请在条目的讨论页讨论此问题。 哈萨克斯坦總統哈薩克總統旗現任Қасым-Жомарт Кемелұлы Тоқаев卡瑟姆若马尔特·托卡耶夫自2019年3月20日在任任期7年首任努尔苏丹·纳扎尔巴耶夫设立1990年4月24日(哈薩克蘇維埃社會主義共和國總統) 哈萨克斯坦 哈萨克斯坦政府與…

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддійсь…

لا يزال النص الموجود في هذه الصفحة في مرحلة الترجمة إلى العربية. إذا كنت تعرف اللغة المستعملة، لا تتردد في الترجمة. (أبريل 2019) القائمة التالية هي بالأماكن الأسطورية التي تظهر في الحكايات الأسطورية والفلكلور والنصوص الدينية. الاسم الوصف أركاديا (يوتوبيا) تصور للحياة الرعوية و…

Kembali kehalaman sebelumnya