Share to: share facebook share twitter share wa share telegram print page

Wigner crystal

Structure of a two-dimensional Wigner crystal in a parabolic potential trap with 600 electrons. Triangles and squares mark positions of the topological defects.

A Wigner crystal is the solid (crystalline) phase of electrons first predicted by Eugene Wigner in 1934.[1][2] A gas of electrons moving in a uniform, inert, neutralizing background (i.e. Jellium Model) will crystallize and form a lattice if the electron density is less than a critical value. This is because the potential energy dominates the kinetic energy at low densities, so the detailed spatial arrangement of the electrons becomes important. To minimize the potential energy, the electrons form a bcc (body-centered cubic) lattice in 3D, a triangular lattice in 2D and an evenly spaced lattice in 1D. Most experimentally observed Wigner clusters exist due to the presence of the external confinement, i.e. external potential trap. As a consequence, deviations from the b.c.c or triangular lattice are observed.[3] A crystalline state of the 2D electron gas can also be realized by applying a sufficiently strong magnetic field. [citation needed] However, it is still not clear whether it is the Wigner crystallization that has led to observation of insulating behaviour in magnetotransport measurements on 2D electron systems, since other candidates are present, such as Anderson localization.[clarification needed]

More generally, a Wigner crystal phase can also refer to a crystal phase occurring in non-electronic systems at low density. In contrast, most crystals melt as the density is lowered. Examples seen in the laboratory are charged colloids or charged plastic spheres.[citation needed]

Description

A uniform electron gas at zero temperature is characterised by a single dimensionless parameter, the so-called Wigner–Seitz radius rs = a / ab, where a is the average inter-particle spacing and ab is the Bohr radius. The kinetic energy of an electron gas scales as 1/rs2, this can be seen for instance by considering a simple Fermi gas. The potential energy, on the other hand, is proportional to 1/rs. When rs becomes larger at low density, the latter becomes dominant and forces the electrons as far apart as possible. As a consequence, they condense into a close-packed lattice. The resulting electron crystal is called the Wigner crystal.[4]

Based on the Lindemann criterion one can find an estimate for the critical rs. The criterion states that the crystal melts when the root-mean-square displacement of the electrons is about a quarter of the lattice spacing a. On the assumption that vibrations of the electrons are approximately harmonic, one can use that for a quantum harmonic oscillator the root mean square displacement in the ground state (in 3D) is given by

with the Planck constant, me the electron mass and ω the characteristic frequency of the oscillations. The latter can be estimated by considering the electrostatic potential energy for an electron displaced by r from its lattice point. Say that the Wigner–Seitz cell associated to the lattice point is approximately a sphere of radius a/2. The uniform, neutralizing background then gives rise to a smeared positive charge of density with the electron charge. The electric potential felt by the displaced electron as a result of this is given by

with ε0 the vacuum permittivity. Comparing to the energy of a harmonic oscillator, one can read off

or, combining this with the result from the quantum harmonic oscillator for the root-mean-square displacement

The Lindemann criterion than gives us the estimate that rs > 40 is required to give a stable Wigner crystal. Quantum Monte Carlo simulations indicate that the uniform electron gas actually crystallizes at rs = 106 in 3D[5][6] and rs = 31 in 2D.[7][8][9]

For classical systems at elevated temperatures one uses the average interparticle interaction in units of the temperature: .. The Wigner transition occurs at G = 170 in 3D[10] and G = 125 in 2D.[11] It is believed that ions, such as those of iron, form a Wigner crystal in the interiors of white dwarf stars.

Experimental realisation

In practice, it is difficult to experimentally realize a Wigner crystal because quantum mechanical fluctuations overpower the Coulomb repulsion and quickly cause disorder. Low electron density is needed. One notable example occurs in quantum dots with low electron densities or high magnetic fields where electrons will spontaneously localize in some situations, forming a so-called rotating "Wigner molecule",[12] a crystalline-like state adapted to the finite size of the quantum dot.

Wigner crystallization in a two-dimensional electron gas under high magnetic fields was predicted (and was observed experimentally)[13] to occur for small filling factors[14] (less than ) of the lowest Landau level. For larger fractional fillings, the Wigner crystal was thought to be unstable relative to the fractional quantum Hall effect (FQHE) liquid states. A Wigner crystal was observed in the immediate neighborhood of the large fractional filling ,[15] and led to a new understanding[16] (based on the pinning of a rotating Wigner molecule) for the interplay between quantum-liquid and pinned-solid phases in the lowest Landau level.

Another experimental realisation of the Wigner crystal occurred in single-electron transistors with very low currents, where a 1D Wigner crystal formed. The current due to each electron can be directly detected experimentally.[17]

Additionally, experiments using quantum wires (short quantum wires are sometimes referred to as ‘quantum point contacts’, (QPCs)) have led to suggestions of Wigner crystallization in 1D systems.[18] In the experiment performed by Hew et al., a 1D channel was formed by confining electrons in both directions transverse to the electron transport, by the band structure of the GaAs/AlGaAs heterojunction and the potential from the QPC. The device design allowed the electron density in the 1D channel to vary relatively independently of the strength of transverse confining potential, thus allowing experiments to be performed in the regime in which Coulomb interactions between electrons dominate the kinetic energy. Conductance through a QPC shows a series of plateaux quantized in units of the conductance quantum, 2e2/h However, this experiment reported a disappearance of the first plateau (resulting in a jump in conductance of 4e2/h), which was attributed to the formation of two parallel rows of electrons. In a strictly 1D system, electrons occupy equidistant points along a line, i.e. a 1D Wigner crystal. As the electron density increases, the Coulomb repulsion becomes large enough to overcome the electrostatic potential confining the 1D Wigner crystal in the transverse direction, leading to a lateral rearrangement of the electrons into a double-row structure.[19][20] The evidence of a double row observed by Hew et al. may point towards the beginnings of a Wigner crystal in a 1D system.

In 2018, a transverse magnetic focusing that combines charge and spin detection was used to directly probe a Wigner crystal and its spin properties in 1D quantum wires with tunable width. It provides direct evidence and a better understanding of the nature of zigzag Wigner crystallization by unveiling both the structural and the spin phase diagrams.[21]

Direct evidence for the formation of small Wigner crystals was reported in 2019.[22]

In 2024, physicists managed to directly image a Wigner crystal with a scanning tunneling microscope.[23][24]

Wigner crystal materials

Some layered Van der Waals materials, such as transition metal dichalcogenides have intrinsically large rs values which exceed the 2D theoretical Wigner crystal limit rs=31~38. The origin of the large rs is partly due to the suppressed kinetic energy arising from a strong electron phonon interaction which leads to polaronic band narrowing, and partly due to the low carrier density n at low temperatures. The charge density wave (CDW) state in such materials, such as 1T-TaS2, with a sparsely filled √13x√13 superlattice and rs=70~100 may be considered to be better described in terms of a Wigner crystal than the more traditional charge density wave. This viewpoint is supported both by modelling and systematic scanning tunnelling microscopy measurements.[25] Thus, Wigner crystal superlattices in so-called CDW systems may be considered to be the first direct observation of ordered electron states localised by mutual Coulomb interaction. An important criterion for is the depth of charge modulation, which depends on the material, and only systems where rs exceeds the theoretical limit can be regarded as Wigner crystals.

In 2020, a direct image of a Wigner crystal observed by microscopy was obtained in molybdenum diselenide/molybdenum disulfide (MoSe2/MoS2) moiré heterostructures.[26][27]

A 2021 experiment created a Wigner crystal near 0K by confining electrons using a monolayer sheet of molybdenum diselenide. The sheet was sandwiched between two graphene electrodes and a voltage was applied. The resulting electron spacing was around 20 nanometers, as measured by the stationary appearance of light-agitated excitons.[28][29]

Another 2021 experiment reported quantum Wigner crystals where quantum fluctuations dominate over the thermal fluctuation in two coupled layers of molybdenum diselenide without any magnetic field. The researchers documented both thermal and quantum melting of the Wigner crystal in this experiment.[30][31]

References

  1. ^ Wigner, E. (1934). "On the Interaction of Electrons in Metals". Physical Review. 46 (11): 1002–1011. Bibcode:1934PhRv...46.1002W. doi:10.1103/PhysRev.46.1002.
  2. ^ Wigner, E. P. (1938). "Effects of the electron interaction on the energy levels of electrons in metals". Transactions of the Faraday Society. 34: 678. doi:10.1039/TF9383400678.
  3. ^ Radzvilavicius, A.; Anisimovas, E. (2011). "Topological defect motifs in two-dimensional Coulomb clusters". Journal of Physics: Condensed Matter. 23 (38): 385301. arXiv:1204.6028. Bibcode:2011JPCM...23L5301R. doi:10.1088/0953-8984/23/38/385301. PMID 21891854. S2CID 22775297.
  4. ^ Jenö, S. (2010). Fundamentals of the Physics of Solids: Volume 3-Normal, Broken-Symmetry, and Correlated Systems. Vol. 3. Springer Science & Business Media.
  5. ^ Ceperley, D. M. (1980). "Ground State of the Electron Gas by a Stochastic Method". Physical Review Letters. 45 (7): 566–569. Bibcode:1980PhRvL..45..566C. doi:10.1103/PhysRevLett.45.566. S2CID 55620379.
  6. ^ Drummond, N.; Radnai, Z.; Trail, J.; Towler, M.; Needs, R. (2004). "Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals". Physical Review B. 69 (8): 085116. arXiv:0801.0377. Bibcode:2004PhRvB..69h5116D. doi:10.1103/PhysRevB.69.085116. S2CID 18176116.
  7. ^ Tanatar, B.; Ceperley, D. (1989). "Ground state of the two-dimensional electron gas". Physical Review B. 39 (8): 5005–5016. Bibcode:1989PhRvB..39.5005T. doi:10.1103/PhysRevB.39.5005. PMID 9948889.
  8. ^ Rapisarda, F.; Senatore, G. (1996). "Diffusion Monte Carlo study of electrons in two-dimensional layers". Australian Journal of Physics. 49: 161. Bibcode:1996AuJPh..49..161R. doi:10.1071/PH960161.
  9. ^ Drummond, N.D.; Needs, R.J. (2009). "Phase diagram of the low-density two-dimensional homogeneous electron gas". Physical Review Letters. 102 (12): 126402. arXiv:1002.2101. Bibcode:2009PhRvL.102l6402D. doi:10.1103/PhysRevLett.102.126402. PMID 19392300. S2CID 35125378.
  10. ^ Dubin, D. H. E.; O'neil, T. M. (1999). "Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states)". Reviews of Modern Physics. 71 (1): 87–172. Bibcode:1999RvMP...71...87D. doi:10.1103/RevModPhys.71.87. S2CID 121503874.
  11. ^ Imai, Y.; Kawakami, N.; Tsunetsugu, H. (2003). "Low-energy excitations of the Hubbard model on the Kagomé lattice". Physical Review B. 68 (19): 195103. arXiv:cond-mat/0305144. Bibcode:2003PhRvB..68s5103I. doi:10.1103/PhysRevB.68.195103. S2CID 119104323.
  12. ^ Yannouleas, C.; Landman, U. (2007). "Symmetry breaking and quantum correlations in finite systems: studies of quantum dots and ultracold Bose gases and related nuclear and chemical methods". Reports on Progress in Physics. 70 (12): 2067–2148. arXiv:0711.0637. Bibcode:2007RPPh...70.2067Y. doi:10.1088/0034-4885/70/12/R02. PMID 34996294. S2CID 13566409.
  13. ^ Andrei, E. Y.; Deville, G.; Glattli, D. C.; Williams, F. I. B.; Paris, E.; Etienne, B. (1988). "Observation of a magnetically induced Wigner solid". Physical Review Letters. 60 (26): 2765–2768. Bibcode:1988PhRvL..60.2765A. doi:10.1103/PhysRevLett.60.2765. PMID 10038446.
  14. ^ Jain, J.K. (2007). Composite Fermions. Cambridge, England: Cambridge University Press.
  15. ^ Zhu, H.; Chen, Y.P.; Jiang, P.; Engel, L.W.; Tsui, D.C.; Pfeiffer, L.N.; West, K.W. (2010). "Observation of a pinning mode in a Wigner solid with ν=1/3 fractional quantum Hall excitations". Physical Review Letters. 105 (12): 126803. arXiv:1006.2335. Bibcode:2010PhRvL.105l6803Z. doi:10.1103/PhysRevLett.105.126803. PMID 20867666. S2CID 39310388.
  16. ^ Yannouleas, C.; Landman, U. (2011). "Unified microscopic approach to the interplay of pinned-Wigner-solid and liquid behavior of the lowest-Landau-level states in the neighborhood of ν=1/3". Physical Review B. 84 (16): 165327. arXiv:1111.0019. Bibcode:2011PhRvB..84p5327Y. doi:10.1103/PhysRevB.84.165327. S2CID 16425687.
  17. ^ Bylander, Jonas; Duty, Tim; Delsing, Per (2005). "Current measurement by real-time counting of single electrons". Nature. 434 (7031): 361–364. arXiv:cond-mat/0411420. Bibcode:2005Natur.434..361B. doi:10.1038/nature03375. PMID 15772655. S2CID 11689132. (see also the Nature review article here
  18. ^ Hew, W.K.; Thomas, K.J.; Pepper, M.; Farrer, I.; Anderson, D.; Jones, G.A.C.; Ritchie, D.A. (2009). "Incipient Formation of an Electron Lattice in a Weakly Confined Quantum Wire". Physical Review Letters. 102 (5): 056804. arXiv:0907.1634. Bibcode:2009PhRvL.102e6804H. doi:10.1103/PhysRevLett.102.056804. PMID 19257536. S2CID 8675868.
  19. ^ Meyer, J. S.; Matveev, K. A. (January 2009). "Wigner Crystal Physics in Quantum Wires". J. Phys.: Condens. Matter. 21 (2): 023203. arXiv:0808.2076. Bibcode:2009JPCM...21b3203M. doi:10.1088/0953-8984/21/2/023203. PMID 21813970. S2CID 9790470.
  20. ^ Klironomos, A. D.; Meyer, J. S.; Matveev, K. A. (May 2006). "Spontaneous Spin Polarization in Quantum Wires". Europhysics Letters. 74 (4): 679–685. arXiv:cond-mat/0507387. Bibcode:2006EL.....74..679K. doi:10.1209/epl/i2006-10024-x. S2CID 118968227.
  21. ^ Ho, Sheng-Chin; Chang, Heng-Jian; Chang, Chia-Hua; Lo, Shun-Tsung; Creeth, Graham; Kumar, Sanjeev; Farrer, Ian; Ritchie, David; Griffiths, Jonathan; Jones, Geraint; Pepper, Michael; Chen, Tse-Ming (6 September 2018). "Imaging the Zigzag Wigner Crystal in Confinement-Tunable Quantum Wires". Physical Review Letters. 121 (10): 106801. arXiv:1804.08602. Bibcode:2018PhRvL.121j6801H. doi:10.1103/PhysRevLett.121.106801. PMID 30240231. S2CID 206316690.
  22. ^ Shapir, I.; Hamo, A.; Pecker, S.; Moca, C. P.; Legeza, Ö; Zarand, G.; Ilani, S. (2019-05-31). "Imaging the electronic Wigner crystal in one dimension". Science. 364 (6443): 870–875. arXiv:1803.08523. Bibcode:2019Sci...364..870S. doi:10.1126/science.aat0905. ISSN 0036-8075. PMID 31147516. S2CID 171092729.
  23. ^ Tsui, Yen-Chen; He, Minhao; Hu, Yuwen; Lake, Ethan; Wang, Taige; Watanabe, Kenji; Taniguchi, Takashi; Zaletel, Michael P.; Yazdani, Ali (2024-04-11). "Direct observation of a magnetic-field-induced Wigner crystal". Nature. 628 (8007): 287–292. arXiv:2312.11632. doi:10.1038/s41586-024-07212-7. ISSN 0028-0836.
  24. ^ Starr, Michelle (2024-04-11). "Physicists Finally Capture Mysterious Wigner Crystal After 90 Years". ScienceAlert. Retrieved 2024-04-13.
  25. ^ Vodeb, Jaka; Kabanov, Viktor; Gerasimenko, Yaroslav; Venturini, Rok; Ravnik, Jan; van Midden, Marion; Zupanic, Erik; Sutar, Petra; Mihailovic, Dragan (2019). "Configurational electronic states in layered transition metaldichalcogenides". New Journal of Physics. 21 (8): 083001–083015. arXiv:1901.02232. Bibcode:2019NJPh...21h3001V. doi:10.1088/1367-2630/ab3057.
  26. ^ Li, Hongyuan; Li, Shaowei; Regan, Emma C.; Wang, Danqing; Zhao, Wenyu; Kahn, Salman; Yumigeta, Kentaro; Blei, Mark; Taniguchi, Takashi; Watanabe, Kenji; Tongay, Sefaattin; Zettl, Alex; Crommie, Michael F.; Wang, Feng (September 2021). "Imaging two-dimensional generalized Wigner crystals". Nature. 597 (7878): 650–654. Bibcode:2021Natur.597..650L. doi:10.1038/s41586-021-03874-9. ISSN 1476-4687. PMID 34588665. S2CID 238228974.
  27. ^ Rubio-Verdú, Carmen (September 2021). "Electron crystals come under the microscope". Nature. 597 (7878): 640–641. Bibcode:2021Natur.597..640R. doi:10.1038/d41586-021-02573-9. S2CID 238230444.
  28. ^ Irving, Michael (July 5, 2021). "Scientists create solid crystal form of electrons in the lab". New Atlas. Retrieved 2021-07-05.
  29. ^ Smoleński, Tomasz; Dolgirev, Pavel E.; Kuhlenkamp, Clemens; Popert, Alexander; Shimazaki, Yuya; Back, Patrick; Lu, Xiaobo; Kroner, Martin; Watanabe, Kenji; Taniguchi, Takashi; Esterlis, Ilya (July 2021). "Signatures of Wigner crystal of electrons in a monolayer semiconductor". Nature. 595 (7865): 53–57. arXiv:2010.03078. Bibcode:2021Natur.595...53S. doi:10.1038/s41586-021-03590-4. ISSN 1476-4687. PMID 34194018. S2CID 222177730.
  30. ^ Zhou, You; Sung, Jiho; Brutschea, Elise; et al. (2021). "Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure". Nature. 595 (7865): 48–52. arXiv:2010.03037. Bibcode:2021Natur.595...48Z. doi:10.1038/s41586-021-03560-w. ISSN 0028-0836. PMID 34194017. S2CID 222177721. Retrieved 2021-07-12.
  31. ^ "Multi-institutional Research Team Documents Quantum Melting of Wigner Crystals". Department of Materials Science and Engineering. 2021-06-29. Retrieved 2021-07-12.
Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya