Yff center of congruence
In geometry, the Yff center of congruence is a special point associated with a triangle. This special point is a triangle center and Peter Yff initiated the study of this triangle center in 1987.[1] IsoscelizerAn isoscelizer of an angle A in a triangle △ABC is a line through points P1, Q1, where P1 lies on AB and Q1 on AC, such that the triangle △AP1Q1 is an isosceles triangle. An isoscelizer of angle A is a line perpendicular to the bisector of angle A. Isoscelizers were invented by Peter Yff in 1963.[2] Yff central triangleLet △ABC be any triangle. Let P1Q1 be an isoscelizer of angle A, P2Q2 be an isoscelizer of angle B, and P3Q3 be an isoscelizer of angle C. Let △A'B'C' be the triangle formed by the three isoscelizers. The four triangles △A'P2Q3, △Q1B'P3, △P1Q2C', and △A'B'C' are always similar. There is a unique set of three isoscelizers P1Q1, P2Q2, P3Q3 such that the four triangles △A'P2Q3, △Q1B'P3, △P1Q2C', and △A'B'C' are congruent. In this special case △A'B'C' formed by the three isoscelizers is called the Yff central triangle of △ABC.[3] The circumcircle of the Yff central triangle is called the Yff central circle of the triangle. Yff center of congruenceLet △ABC be any triangle. Let P1Q1, P2Q2, P3Q3 be the isoscelizers of the angles A, B, C such that the triangle △A'B'C' formed by them is the Yff central triangle of △ABC. The three isoscelizers P1Q1, P2Q2, P3Q3 are continuously parallel-shifted such that the three triangles △A'P2Q3, △Q1B'P3, △P1Q2C' are always congruent to each other until △A'B'C' formed by the intersections of the isoscelizers reduces to a point. The point to which △A'B'C' reduces to is called the Yff center of congruence of △ABC. Properties
GeneralizationThe geometrical construction for locating the Yff center of congruence has an interesting generalization. The generalisation begins with an arbitrary point P in the plane of a triangle △ABC. Then points D, E, F are taken on the sides BC, CA, AB such that The generalization asserts that the lines AD, BE, CF are concurrent.[4] See alsoReferences
|