Superficies coordenadas del sistema de coordenadas elipsoidal (η,θ,λ ) con a=60 y b=40. El elipsoide azul corresponde a η =70, el hiperboloide rojo de una hoja corresponde a θ =50 y el hiperboloide amarillo de dos hojas corresponde a λ =30
Las coordenadas elipsoidales [ 1] son un sistema de referencia tridimensional ortogonal , que generaliza el sistema de coordenadas elípticas bidimensional. A diferencia de la mayoría de los sistemas de coordenadas tridimensionales ortogonales que emplean funciones cuadráticas , el sistema de coordenadas elipsoidales se basa en secciones cónicas confocales .
Fórmulas básicas
Sistema de coordenadas elipsoidal triaxial
Las coordenadas cartesianas
(
x
,
y
,
z
)
{\displaystyle (x,y,z)}
se pueden obtener a partir de las coordenadas elipsoidales
(
λ
,
μ
,
ν
)
{\displaystyle (\lambda ,\mu ,\nu )}
mediante las ecuaciones
x
2
=
(
a
2
+
λ
)
(
a
2
+
μ
)
(
a
2
+
ν
)
(
a
2
−
b
2
)
(
a
2
−
c
2
)
{\displaystyle x^{2}={\frac {\left(a^{2}+\lambda \right)\left(a^{2}+\mu \right)\left(a^{2}+\nu \right)}{\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)}}}
y
2
=
(
b
2
+
λ
)
(
b
2
+
μ
)
(
b
2
+
ν
)
(
b
2
−
a
2
)
(
b
2
−
c
2
)
{\displaystyle y^{2}={\frac {\left(b^{2}+\lambda \right)\left(b^{2}+\mu \right)\left(b^{2}+\nu \right)}{\left(b^{2}-a^{2}\right)\left(b^{2}-c^{2}\right)}}}
z
2
=
(
c
2
+
λ
)
(
c
2
+
μ
)
(
c
2
+
ν
)
(
c
2
−
b
2
)
(
c
2
−
a
2
)
{\displaystyle z^{2}={\frac {\left(c^{2}+\lambda \right)\left(c^{2}+\mu \right)\left(c^{2}+\nu \right)}{\left(c^{2}-b^{2}\right)\left(c^{2}-a^{2}\right)}}}
donde se aplican los siguientes límites a las coordenadas
−
λ
<
c
2
<
−
μ
<
b
2
<
−
ν
<
a
2
.
{\displaystyle -\lambda <c^{2}<-\mu <b^{2}<-\nu <a^{2}.}
En consecuencia, las superficies de
λ
{\displaystyle \lambda }
constante son elipsoides
x
2
a
2
+
λ
+
y
2
b
2
+
λ
+
z
2
c
2
+
λ
=
1
,
{\displaystyle {\frac {x^{2}}{a^{2}+\lambda }}+{\frac {y^{2}}{b^{2}+\lambda }}+{\frac {z^{2}}{c^{2}+\lambda }}=1,}
mientras que las superficies de
μ
{\displaystyle \mu }
constante son hiperboloides de una hoja
x
2
a
2
+
μ
+
y
2
b
2
+
μ
+
z
2
c
2
+
μ
=
1
,
{\displaystyle {\frac {x^{2}}{a^{2}+\mu }}+{\frac {y^{2}}{b^{2}+\mu }}+{\frac {z^{2}}{c^{2}+\mu }}=1,}
porque el último término en la parte izquierda de la ecuación es negativo, y las superficies de
ν
{\displaystyle \nu }
constante son hiperboloides de dos hojas
x
2
a
2
+
ν
+
y
2
b
2
+
ν
+
z
2
c
2
+
ν
=
1
{\displaystyle {\frac {x^{2}}{a^{2}+\nu }}+{\frac {y^{2}}{b^{2}+\nu }}+{\frac {z^{2}}{c^{2}+\nu }}=1}
porque los dos últimos términos en la parte izquierda de la ecuación son negativos.
El sistema ortogonal de cuádricas utilizado para las coordenadas elipsoidales es confocal .
Para que esto sea posible, se debe cumplir que
0
≤
λ
2
<
b
2
<
θ
2
<
a
2
<
η
2
{\displaystyle 0\leq \lambda ^{2}<b^{2}<\theta ^{2}<a^{2}<\eta ^{2}}
Los cuadrados de las coordenadas se pueden determinar a partir de las tres ecuaciones anteriores:
x
2
=
(
η
2
−
a
2
)
(
θ
2
−
a
2
)
(
λ
2
−
a
2
)
a
2
(
a
2
−
b
2
)
,
y
2
=
(
η
2
−
b
2
)
(
θ
2
−
b
2
)
(
λ
2
−
b
2
)
b
2
(
b
2
−
a
2
)
,
z
2
=
(
η
θ
λ
a
b
)
2
{\displaystyle x^{2}={\frac {(\eta ^{2}-a^{2})(\theta ^{2}-a^{2})(\lambda ^{2}-a^{2})}{a^{2}(a^{2}-b^{2})}},\;y^{2}={\frac {(\eta ^{2}-b^{2})(\theta ^{2}-b^{2})(\lambda ^{2}-b^{2})}{b^{2}(b^{2}-a^{2})}},\;z^{2}=\left({\frac {\eta \theta \lambda }{ab}}\right)^{2}}
Las coordenadas se pueden representar con las tres funciones jacobianas básicas
s
n
(
α
,
k
)
,
c
n
(
β
,
k
′
)
,
d
n
(
γ
,
k
)
{\displaystyle {\rm {sn}}(\alpha ,k),\,{\rm {cn}}(\beta ,k'),\,{\rm {dn}}(\gamma ,k)}
, seno–, coseno– o delta ampliada con el módulo elíptico
k
=
b
/
a
{\displaystyle k=b/a}
y el parámetro complementario
k
′
=
1
−
k
2
=:
d
/
a
,
d
:=
a
2
−
b
2
{\displaystyle k'={\sqrt {1-k^{2}}}=:d/a,d:={\sqrt {a^{2}-b^{2}}}}
en función de tres parámetros α, β y γ :[ 2] : 663
(
x
y
z
)
=
a
c
n
(
α
,
k
)
(
k
′
s
n
(
α
,
k
)
s
n
(
β
,
k
′
)
d
n
(
γ
,
k
)
k
′
c
n
(
β
,
k
′
)
c
n
(
γ
,
k
)
d
n
(
α
,
k
)
d
n
(
β
,
k
′
)
s
n
(
γ
,
k
)
)
,
(
η
θ
λ
)
=
a
c
n
(
α
,
k
)
(
d
n
(
α
,
k
)
c
n
(
α
,
k
)
d
n
(
β
,
k
′
)
k
c
n
(
α
,
k
)
s
n
(
γ
,
k
)
)
{\displaystyle {\begin{pmatrix}x\\y\\z\end{pmatrix}}={\frac {a}{{\rm {cn}}(\alpha ,k)}}{\begin{pmatrix}k'\,{\rm {sn}}(\alpha ,k)\,{\rm {sn}}(\beta ,k')\,{\rm {dn}}(\gamma ,k)\\k'\,{\rm {cn}}(\beta ,k')\,{\rm {cn}}(\gamma ,k)\\{\rm {dn}}(\alpha ,k)\,{\rm {dn}}(\beta ,k')\,{\rm {sn}}(\gamma ,k)\\\end{pmatrix}},\;{\begin{pmatrix}\eta \\\theta \\\lambda \end{pmatrix}}={\frac {a}{{\rm {cn}}(\alpha ,k)}}{\begin{pmatrix}{\rm {dn}}(\alpha ,k)\\{\rm {cn}}(\alpha ,k)\,{\rm {dn}}(\beta ,k')\\k\,{\rm {cn}}(\alpha ,k)\,{\rm {sn}}(\gamma ,k)\end{pmatrix}}}
En esta representación debe recordarse que θ ≥0 y que
z
=
η
θ
λ
a
b
{\displaystyle z={\tfrac {\eta \theta \lambda }{ab}}}
.
Factores métricos, trayectoria y elementos de área y volumen
Los vectores de una base covariante de la forma
r
→
=
(
x
,
y
,
z
)
⊤
{\displaystyle {\vec {r}}=(x,y,z)^{\top }}
se expresan como
g
→
η
:=
∂
r
→
∂
η
=
(
η
x
η
2
−
a
2
η
y
η
2
−
b
2
z
η
)
,
g
→
θ
:=
∂
r
→
∂
θ
=
(
−
θ
x
a
2
−
θ
2
θ
y
θ
2
−
b
2
z
θ
)
,
g
→
λ
:=
∂
r
→
∂
λ
=
(
−
λ
x
a
2
−
λ
2
−
λ
y
b
2
−
λ
2
z
λ
)
{\displaystyle {\vec {g}}_{\eta }:={\frac {\partial {\vec {r}}}{\partial \eta }}={\begin{pmatrix}{\frac {\eta x}{\eta ^{2}-a^{2}}}\\{\frac {\eta y}{\eta ^{2}-b^{2}}}\\{\frac {z}{\eta }}\end{pmatrix}},\;{\vec {g}}_{\theta }:={\frac {\partial {\vec {r}}}{\partial \theta }}={\begin{pmatrix}-{\frac {\theta x}{a^{2}-\theta ^{2}}}\\{\frac {\theta y}{\theta ^{2}-b^{2}}}\\{\frac {z}{\theta }}\end{pmatrix}},\;{\vec {g}}_{\lambda }:={\frac {\partial {\vec {r}}}{\partial \lambda }}={\begin{pmatrix}-{\frac {\lambda x}{a^{2}-\lambda ^{2}}}\\-{\frac {\lambda y}{b^{2}-\lambda ^{2}}}\\{\frac {z}{\lambda }}\end{pmatrix}}}
que como es lógico son perpendiculares entre sí, y en este orden forman un sistema ortogonal.[ 3] Los factores métricos son las dimensiones de los vectores de base covariantes:[ 2] : 663
h
η
=
(
η
2
−
θ
2
)
(
η
2
−
λ
2
)
(
η
2
−
a
2
)
(
η
2
−
b
2
)
,
h
θ
=
(
θ
2
−
η
2
)
(
θ
2
−
λ
2
)
(
θ
2
−
a
2
)
(
θ
2
−
b
2
)
,
h
λ
=
(
λ
2
−
η
2
)
(
λ
2
−
θ
2
)
(
λ
2
−
a
2
)
(
λ
2
−
b
2
)
{\displaystyle h_{\eta }={\sqrt {\frac {(\eta ^{2}-\theta ^{2})(\eta ^{2}-\lambda ^{2})}{(\eta ^{2}-a^{2})(\eta ^{2}-b^{2})}}},\;h_{\theta }={\sqrt {\frac {(\theta ^{2}-\eta ^{2})(\theta ^{2}-\lambda ^{2})}{(\theta ^{2}-a^{2})(\theta ^{2}-b^{2})}}},\;h_{\lambda }={\sqrt {\frac {(\lambda ^{2}-\eta ^{2})(\lambda ^{2}-\theta ^{2})}{(\lambda ^{2}-a^{2})(\lambda ^{2}-b^{2})}}}}
En consecuencia, el sistema de coordenadas elipsoidal ortogonal es
c
^
η
:=
(
η
2
−
a
2
)
(
η
2
−
b
2
)
(
η
2
−
θ
2
)
(
η
2
−
λ
2
)
(
η
x
η
2
−
a
2
η
y
η
2
−
b
2
z
η
)
c
^
θ
:=
(
θ
2
−
a
2
)
(
θ
2
−
b
2
)
(
θ
2
−
η
2
)
(
θ
2
−
λ
2
)
(
−
θ
x
a
2
−
θ
2
θ
y
θ
2
−
b
2
z
θ
)
c
^
λ
:=
(
λ
2
−
a
2
)
(
λ
2
−
b
2
)
(
λ
2
−
η
2
)
(
λ
2
−
θ
2
)
(
−
λ
x
a
2
−
λ
2
−
λ
y
b
2
−
λ
2
z
λ
)
{\displaystyle {\begin{aligned}{\hat {c}}_{\eta }:=&{\sqrt {\frac {(\eta ^{2}-a^{2})(\eta ^{2}-b^{2})}{(\eta ^{2}-\theta ^{2})(\eta ^{2}-\lambda ^{2})}}}{\begin{pmatrix}{\frac {\eta x}{\eta ^{2}-a^{2}}}\\{\frac {\eta y}{\eta ^{2}-b^{2}}}\\{\frac {z}{\eta }}\end{pmatrix}}\\{\hat {c}}_{\theta }:=&{\sqrt {\frac {(\theta ^{2}-a^{2})(\theta ^{2}-b^{2})}{(\theta ^{2}-\eta ^{2})(\theta ^{2}-\lambda ^{2})}}}{\begin{pmatrix}-{\frac {\theta x}{a^{2}-\theta ^{2}}}\\{\frac {\theta y}{\theta ^{2}-b^{2}}}\\{\frac {z}{\theta }}\end{pmatrix}}\\{\hat {c}}_{\lambda }:=&{\sqrt {\frac {(\lambda ^{2}-a^{2})(\lambda ^{2}-b^{2})}{(\lambda ^{2}-\eta ^{2})(\lambda ^{2}-\theta ^{2})}}}{\begin{pmatrix}-{\frac {\lambda x}{a^{2}-\lambda ^{2}}}\\-{\frac {\lambda y}{b^{2}-\lambda ^{2}}}\\{\frac {z}{\lambda }}\end{pmatrix}}\end{aligned}}}
Los elementos de arco, área y volumen dan como resultado:[ 4] : 18 [ 5] : 392
d
r
→
=
g
→
η
d
η
+
g
→
θ
d
θ
+
g
→
λ
d
λ
d
s
2
:=
|
d
r
→
|
2
=
(
η
2
−
θ
2
)
(
η
2
−
λ
2
)
(
η
2
−
a
2
)
(
η
2
−
b
2
)
d
η
2
+
(
θ
2
−
η
2
)
(
θ
2
−
λ
2
)
(
θ
2
−
a
2
)
(
θ
2
−
b
2
)
d
θ
2
+
(
λ
2
−
η
2
)
(
λ
2
−
θ
2
)
(
λ
2
−
a
2
)
(
λ
2
−
b
2
)
d
λ
2
d
A
:=
h
η
h
θ
c
^
λ
d
η
d
θ
+
h
θ
h
λ
c
^
η
d
θ
d
λ
+
h
λ
h
η
c
^
θ
d
λ
d
η
d
V
:=
h
η
h
θ
h
λ
d
η
d
θ
d
λ
{\displaystyle {\begin{aligned}{\rm {d}}{\vec {r}}=&{\vec {g}}_{\eta }{\rm {d}}\eta +{\vec {g}}_{\theta }{\rm {d}}\theta +{\vec {g}}_{\lambda }{\rm {d}}\lambda \\{\rm {d}}s^{2}:=&|{\rm {d}}{\vec {r}}|^{2}={\frac {(\eta ^{2}-\theta ^{2})(\eta ^{2}-\lambda ^{2})}{(\eta ^{2}-a^{2})(\eta ^{2}-b^{2})}}\,{\rm {d}}\eta ^{2}+{\frac {(\theta ^{2}-\eta ^{2})(\theta ^{2}-\lambda ^{2})}{(\theta ^{2}-a^{2})(\theta ^{2}-b^{2})}}\,{\rm {d}}\theta ^{2}+{\frac {(\lambda ^{2}-\eta ^{2})(\lambda ^{2}-\theta ^{2})}{(\lambda ^{2}-a^{2})(\lambda ^{2}-b^{2})}}\,{\rm {d}}\lambda ^{2}\\{\rm {d}}A:=&h_{\eta }h_{\theta }{\hat {c}}_{\lambda }\,{\rm {d}}\eta \,{\rm {d}}\theta +h_{\theta }h_{\lambda }{\hat {c}}_{\eta }\,{\rm {d}}\theta \,{\rm {d}}\lambda +h_{\lambda }h_{\eta }{\hat {c}}_{\theta }\,{\rm {d}}\lambda \,{\rm {d}}\eta \\{\rm {d}}V:=&h_{\eta }h_{\theta }h_{\lambda }\,{\rm {d}}\eta \,{\rm {d}}\theta \,{\rm {d}}\lambda \end{aligned}}}
Factores de escala y operadores diferenciales
Para abreviar las ecuaciones siguientes, se introduce la función
S
(
σ
)
=
d
e
f
(
a
2
+
σ
)
(
b
2
+
σ
)
(
c
2
+
σ
)
{\displaystyle S(\sigma )\ {\stackrel {\mathrm {def} }{=}}\ \left(a^{2}+\sigma \right)\left(b^{2}+\sigma \right)\left(c^{2}+\sigma \right)}
donde
σ
{\displaystyle \sigma }
puede representar cualquiera de las tres variables
(
λ
,
μ
,
ν
)
{\displaystyle (\lambda ,\mu ,\nu )}
. Usando esta función, los factores de escala pueden escribirse como
h
λ
=
1
2
(
λ
−
μ
)
(
λ
−
ν
)
S
(
λ
)
{\displaystyle h_{\lambda }={\frac {1}{2}}{\sqrt {\frac {\left(\lambda -\mu \right)\left(\lambda -\nu \right)}{S(\lambda )}}}}
h
μ
=
1
2
(
μ
−
λ
)
(
μ
−
ν
)
S
(
μ
)
{\displaystyle h_{\mu }={\frac {1}{2}}{\sqrt {\frac {\left(\mu -\lambda \right)\left(\mu -\nu \right)}{S(\mu )}}}}
h
ν
=
1
2
(
ν
−
λ
)
(
ν
−
μ
)
S
(
ν
)
{\displaystyle h_{\nu }={\frac {1}{2}}{\sqrt {\frac {\left(\nu -\lambda \right)\left(\nu -\mu \right)}{S(\nu )}}}}
Por lo tanto, el elemento de volumen infinitesimal es igual a
d
V
=
(
λ
−
μ
)
(
λ
−
ν
)
(
μ
−
ν
)
8
−
S
(
λ
)
S
(
μ
)
S
(
ν
)
d
λ
d
μ
d
ν
{\displaystyle dV={\frac {\left(\lambda -\mu \right)\left(\lambda -\nu \right)\left(\mu -\nu \right)}{8{\sqrt {-S(\lambda )S(\mu )S(\nu )}}}}\,d\lambda \,d\mu \,d\nu }
y el laplaciano se define por
∇
2
Φ
=
4
S
(
λ
)
(
λ
−
μ
)
(
λ
−
ν
)
∂
∂
λ
[
S
(
λ
)
∂
Φ
∂
λ
]
+
4
S
(
μ
)
(
μ
−
λ
)
(
μ
−
ν
)
∂
∂
μ
[
S
(
μ
)
∂
Φ
∂
μ
]
+
4
S
(
ν
)
(
ν
−
λ
)
(
ν
−
μ
)
∂
∂
ν
[
S
(
ν
)
∂
Φ
∂
ν
]
{\displaystyle {\begin{aligned}\nabla ^{2}\Phi ={}&{\frac {4{\sqrt {S(\lambda )}}}{\left(\lambda -\mu \right)\left(\lambda -\nu \right)}}{\frac {\partial }{\partial \lambda }}\left[{\sqrt {S(\lambda )}}{\frac {\partial \Phi }{\partial \lambda }}\right]\\[1ex]&+{\frac {4{\sqrt {S(\mu )}}}{\left(\mu -\lambda \right)\left(\mu -\nu \right)}}{\frac {\partial }{\partial \mu }}\left[{\sqrt {S(\mu )}}{\frac {\partial \Phi }{\partial \mu }}\right]\\[1ex]&+{\frac {4{\sqrt {S(\nu )}}}{\left(\nu -\lambda \right)\left(\nu -\mu \right)}}{\frac {\partial }{\partial \nu }}\left[{\sqrt {S(\nu )}}{\frac {\partial \Phi }{\partial \nu }}\right]\end{aligned}}}
Otros operadores diferenciales como
∇
⋅
F
{\displaystyle \nabla \cdot \mathbf {F} }
y
∇
×
F
{\displaystyle \nabla \times \mathbf {F} }
pueden expresarse en las coordenadas
(
λ
,
μ
,
ν
)
{\displaystyle (\lambda ,\mu ,\nu )}
sustituyendo los factores de escala en las fórmulas generales que se encuentran en el artículo dedicado a las coordenadas ortogonales .
Solución de las ecuaciones de Laplace y de Helmholtz
En coordenadas elipsoidales es posible emplear el método de separación de variables para resolver la ecuación de Laplace y la ecuación de Helmholtz .
Enfoque de Moon y Spencer
El punto de partida para el procedimiento es la matriz de Stäckel[ 4] : 41
S
:=
(
η
4
(
η
2
−
b
2
)
(
η
2
−
a
2
)
1
(
η
2
−
b
2
)
(
η
2
−
a
2
)
η
2
(
η
2
−
b
2
)
(
η
2
−
a
2
)
−
θ
4
(
θ
2
−
b
2
)
(
a
2
−
θ
2
)
−
1
(
θ
2
−
b
2
)
(
a
2
−
θ
2
)
−
θ
2
(
θ
2
−
b
2
)
(
a
2
−
θ
2
)
λ
4
(
b
2
−
λ
2
)
(
a
2
−
λ
2
)
1
(
b
2
−
λ
2
)
(
a
2
−
λ
2
)
λ
2
(
b
2
−
λ
2
)
(
a
2
−
λ
2
)
)
{\displaystyle \mathbf {S} :={\begin{pmatrix}{\frac {\eta ^{4}}{(\eta ^{2}-b^{2})(\eta ^{2}-a^{2})}}&{\frac {1}{(\eta ^{2}-b^{2})(\eta ^{2}-a^{2})}}&{\frac {\eta ^{2}}{(\eta ^{2}-b^{2})(\eta ^{2}-a^{2})}}\\{\frac {-\theta ^{4}}{(\theta ^{2}-b^{2})(a^{2}-\theta ^{2})}}&{\frac {-1}{(\theta ^{2}-b^{2})(a^{2}-\theta ^{2})}}&{\frac {-\theta ^{2}}{(\theta ^{2}-b^{2})(a^{2}-\theta ^{2})}}\\{\frac {\lambda ^{4}}{(b^{2}-\lambda ^{2})(a^{2}-\lambda ^{2})}}&{\frac {1}{(b^{2}-\lambda ^{2})(a^{2}-\lambda ^{2})}}&{\frac {\lambda ^{2}}{(b^{2}-\lambda ^{2})(a^{2}-\lambda ^{2})}}\end{pmatrix}}}
con el determinante
S
=
(
η
2
−
θ
2
)
(
η
2
−
λ
2
)
(
θ
2
−
λ
2
)
(
η
2
−
b
2
)
(
η
2
−
a
2
)
(
θ
2
−
b
2
)
(
a
2
−
θ
2
)
(
b
2
−
λ
2
)
(
a
2
−
λ
2
)
{\displaystyle S={\frac {(\eta ^{2}-\theta ^{2})(\eta ^{2}-\lambda ^{2})(\theta ^{2}-\lambda ^{2})}{(\eta ^{2}-b^{2})(\eta ^{2}-a^{2})(\theta ^{2}-b^{2})(a^{2}-\theta ^{2})(b^{2}-\lambda ^{2})(a^{2}-\lambda ^{2})}}}
y los menores
M
1
=
θ
2
−
λ
2
(
a
2
−
θ
2
)
(
θ
2
−
b
2
)
(
b
2
−
λ
2
)
(
a
2
−
λ
2
)
M
2
=
η
2
−
λ
2
(
η
2
−
a
2
)
(
η
2
−
b
2
)
(
b
2
−
λ
2
)
(
a
2
−
λ
2
)
M
3
=
η
2
−
θ
2
(
η
2
−
a
2
)
(
η
2
−
b
2
)
(
θ
2
−
b
2
)
(
a
2
−
θ
2
)
{\displaystyle {\begin{aligned}M_{1}=&{\frac {\theta ^{2}-\lambda ^{2}}{(a^{2}-\theta ^{2})(\theta ^{2}-b^{2})(b^{2}-\lambda ^{2})(a^{2}-\lambda ^{2})}}\\M_{2}=&{\frac {\eta ^{2}-\lambda ^{2}}{(\eta ^{2}-a^{2})(\eta ^{2}-b^{2})(b^{2}-\lambda ^{2})(a^{2}-\lambda ^{2})}}\\M_{3}=&{\frac {\eta ^{2}-\theta ^{2}}{(\eta ^{2}-a^{2})(\eta ^{2}-b^{2})(\theta ^{2}-b^{2})(a^{2}-\theta ^{2})}}\end{aligned}}}
.
Esto significa que las condiciones necesarias y suficientes para una fácil separabilidad están de acuerdo con la ecuación escalar de Helmholtz
h
η
2
=
S
M
1
,
h
θ
2
=
S
M
2
,
h
λ
2
=
S
M
3
{\displaystyle h_{\eta }^{2}={\frac {S}{M_{1}}},\,h_{\theta }^{2}={\frac {S}{M_{2}}},\,h_{\lambda }^{2}={\frac {S}{M_{3}}}}
y
h
η
h
θ
h
λ
S
=
(
η
2
−
a
2
)
(
η
2
−
b
2
)
⋅
(
a
2
−
θ
2
)
(
θ
2
−
b
2
)
⋅
(
b
2
−
λ
2
)
(
a
2
−
λ
2
)
{\displaystyle {\frac {h_{\eta }h_{\theta }h_{\lambda }}{S}}={\sqrt {(\eta ^{2}-a^{2})(\eta ^{2}-b^{2})}}\cdot {\sqrt {(a^{2}-\theta ^{2})(\theta ^{2}-b^{2})}}\cdot {\sqrt {(b^{2}-\lambda ^{2})(a^{2}-\lambda ^{2})}}}
Los factores de separación
ϕ
(
η
,
θ
,
λ
)
=
H
(
η
)
⋅
Θ
(
θ
)
⋅
Λ
(
λ
)
{\displaystyle \phi (\eta ,\theta ,\lambda )=H(\eta )\cdot \Theta (\theta )\cdot \Lambda (\lambda )}
y las constantes de separación
α
1
,
2
,
3
{\displaystyle \alpha _{1,2,3}}
se determinan a partir de[ 4] : 43
(
η
2
−
a
2
)
(
η
2
−
b
2
)
∂
2
H
∂
η
2
+
[
2
η
2
−
(
a
2
+
b
2
)
]
η
∂
H
∂
η
+
(
a
1
η
4
+
a
3
η
2
+
a
2
)
H
=
0
(
a
2
−
θ
2
)
(
θ
2
−
b
2
)
∂
2
Θ
∂
θ
2
−
[
2
θ
2
−
(
a
2
+
b
2
)
]
θ
∂
Θ
∂
θ
−
(
a
1
θ
4
+
a
3
θ
2
+
a
2
)
Θ
=
0
(
a
2
−
λ
2
)
(
b
2
−
λ
2
)
∂
2
Λ
∂
λ
2
+
[
2
λ
2
−
(
a
2
+
b
2
)
]
λ
∂
Λ
∂
λ
+
(
a
1
λ
4
+
a
3
λ
2
+
a
2
)
Λ
=
0
{\displaystyle {\begin{aligned}(\eta ^{2}-a^{2})(\eta ^{2}-b^{2}){\frac {\partial ^{2}H}{\partial \eta ^{2}}}+[2\eta ^{2}-(a^{2}+b^{2})]\eta {\frac {\partial H}{\partial \eta }}+(a_{1}\eta ^{4}+a_{3}\eta ^{2}+a_{2})H=&0\\(a^{2}-\theta ^{2})(\theta ^{2}-b^{2}){\frac {\partial ^{2}\Theta }{\partial \theta ^{2}}}-[2\theta ^{2}-(a^{2}+b^{2})]\theta {\frac {\partial \Theta }{\partial \theta }}-(a_{1}\theta ^{4}+a_{3}\theta ^{2}+a_{2})\Theta =&0\\(a^{2}-\lambda ^{2})(b^{2}-\lambda ^{2}){\frac {\partial ^{2}\Lambda }{\partial \lambda ^{2}}}+[2\lambda ^{2}-(a^{2}+b^{2})]\lambda {\frac {\partial \Lambda }{\partial \lambda }}+(a_{1}\lambda ^{4}+a_{3}\lambda ^{2}+a_{2})\Lambda =&0\end{aligned}}}
En la ecuación de Helmholtz
Δ
ϕ
+
κ
2
ϕ
=
0
{\displaystyle \Delta \phi +\kappa ^{2}\phi =0}
con
α
1
=
κ
2
{\displaystyle \alpha _{1}=\kappa ^{2}}
y en la ecuación de Laplace se cumple para
α
1
=
0
{\displaystyle \alpha _{1}=0}
.[ 4] : 6
Enfoque de Morse y Feshbach
Otro enfoque[ 2] : 663 utiliza la matriz de Stäckel
S
=
(
1
1
η
2
−
a
2
1
(
a
2
−
b
2
)
(
η
2
−
b
2
)
1
1
θ
2
−
a
2
1
(
a
2
−
b
2
)
(
θ
2
−
b
2
)
1
1
λ
2
−
a
2
1
(
a
2
−
b
2
)
(
λ
2
−
b
2
)
)
{\displaystyle \mathbf {S} ={\begin{pmatrix}1&{\frac {1}{\eta ^{2}-a^{2}}}&{\frac {1}{(a^{2}-b^{2})(\eta ^{2}-b^{2})}}\\1&{\frac {1}{\theta ^{2}-a^{2}}}&{\frac {1}{(a^{2}-b^{2})(\theta ^{2}-b^{2})}}\\1&{\frac {1}{\lambda ^{2}-a^{2}}}&{\frac {1}{(a^{2}-b^{2})(\lambda ^{2}-b^{2})}}\end{pmatrix}}}
con el determinante
S
=
(
η
2
−
λ
2
)
(
η
2
−
θ
2
)
(
θ
2
−
λ
2
)
(
η
2
−
a
2
)
(
η
2
−
b
2
)
(
a
2
−
θ
2
)
(
θ
2
−
b
2
)
(
a
2
−
λ
2
)
(
b
2
−
λ
2
)
{\displaystyle S={\frac {(\eta ^{2}-\lambda ^{2})(\eta ^{2}-\theta ^{2})(\theta ^{2}-\lambda ^{2})}{(\eta ^{2}-a^{2})(\eta ^{2}-b^{2})(a^{2}-\theta ^{2})(\theta ^{2}-b^{2})(a^{2}-\lambda ^{2})(b^{2}-\lambda ^{2})}}}
y los menores
M
1
=
θ
2
−
λ
2
(
a
2
−
θ
2
)
(
θ
2
−
b
2
)
(
a
2
−
λ
2
)
(
b
2
−
λ
2
)
M
2
=
η
2
−
λ
2
(
η
2
−
a
2
)
(
η
2
−
b
2
)
(
a
2
−
λ
2
)
(
b
2
−
λ
2
)
M
3
=
η
2
−
θ
2
(
η
2
−
a
2
)
(
η
2
−
b
2
)
(
a
2
−
θ
2
)
(
θ
2
−
b
2
)
{\displaystyle {\begin{aligned}M_{1}=&{\frac {\theta ^{2}-\lambda ^{2}}{(a^{2}-\theta ^{2})(\theta ^{2}-b^{2})(a^{2}-\lambda ^{2})(b^{2}-\lambda ^{2})}}\\M_{2}=&{\frac {\eta ^{2}-\lambda ^{2}}{(\eta ^{2}-a^{2})(\eta ^{2}-b^{2})(a^{2}-\lambda ^{2})(b^{2}-\lambda ^{2})}}\\M_{3}=&{\frac {\eta ^{2}-\theta ^{2}}{(\eta ^{2}-a^{2})(\eta ^{2}-b^{2})(a^{2}-\theta ^{2})(\theta ^{2}-b^{2})}}\end{aligned}}}
.
Los factores de separación
ϕ
(
η
,
θ
,
λ
)
=
H
(
η
)
⋅
Θ
(
θ
)
⋅
Λ
(
λ
)
{\displaystyle \phi (\eta ,\theta ,\lambda )=H(\eta )\cdot \Theta (\theta )\cdot \Lambda (\lambda )}
y las constantes de separación
α
1
,
2
,
3
{\displaystyle \alpha _{1,2,3}}
resultan de las ecuaciones diferenciales
(
η
2
−
a
2
)
(
η
2
−
b
2
)
∂
2
H
∂
η
2
+
(
2
η
2
−
a
2
−
b
2
)
η
∂
H
∂
η
+
…
⋯
+
{
α
1
η
4
−
[
α
1
(
a
2
+
b
2
)
−
α
2
]
η
2
+
(
α
1
a
2
−
α
2
)
b
2
}
H
=
−
α
3
η
2
−
a
2
a
2
−
b
2
H
(
a
2
−
θ
2
)
(
θ
2
−
b
2
)
∂
2
Θ
∂
θ
2
−
(
2
θ
2
−
b
2
−
a
2
)
θ
∂
Θ
∂
θ
+
…
⋯
+
[
α
1
(
a
2
−
θ
2
)
(
θ
2
−
b
2
)
−
α
2
(
θ
2
−
b
2
)
]
Θ
=
−
α
3
a
2
−
θ
2
a
2
−
b
2
Θ
(
a
2
−
λ
2
)
(
b
2
−
λ
2
)
∂
2
Λ
∂
λ
2
+
(
2
λ
2
−
b
2
−
a
2
)
λ
∂
Λ
∂
λ
+
…
⋯
+
[
α
1
(
a
2
−
λ
2
)
(
b
2
−
λ
2
)
−
α
2
(
b
2
−
λ
2
)
]
Λ
=
α
3
a
2
−
λ
2
a
2
−
b
2
Λ
{\displaystyle {\begin{aligned}&(\eta ^{2}-a^{2})(\eta ^{2}-b^{2}){\frac {\partial ^{2}H}{\partial \eta ^{2}}}+(2\eta ^{2}-a^{2}-b^{2})\eta {\frac {\partial H}{\partial \eta }}+\dots \\&\qquad \dots +\{\alpha _{1}\eta ^{4}-[\alpha _{1}(a^{2}+b^{2})-\alpha _{2}]\eta ^{2}+(\alpha _{1}a^{2}-\alpha _{2})b^{2}\}H=-\alpha _{3}{\frac {\eta ^{2}-a^{2}}{a^{2}-b^{2}}}H\\&(a^{2}-\theta ^{2})(\theta ^{2}-b^{2}){\frac {\partial ^{2}\Theta }{\partial \theta ^{2}}}-(2\theta ^{2}-b^{2}-a^{2})\theta {\frac {\partial \Theta }{\partial \theta }}+\dots \\&\qquad \dots +[\alpha _{1}(a^{2}-\theta ^{2})(\theta ^{2}-b^{2})-\alpha _{2}(\theta ^{2}-b^{2})]\Theta =-\alpha _{3}{\frac {a^{2}-\theta ^{2}}{a^{2}-b^{2}}}\Theta \\&(a^{2}-\lambda ^{2})(b^{2}-\lambda ^{2}){\frac {\partial ^{2}\Lambda }{\partial \lambda ^{2}}}+(2\lambda ^{2}-b^{2}-a^{2})\lambda {\frac {\partial \Lambda }{\partial \lambda }}+\dots \\&\qquad \dots +[\alpha _{1}(a^{2}-\lambda ^{2})(b^{2}-\lambda ^{2})-\alpha _{2}(b^{2}-\lambda ^{2})]\Lambda =\alpha _{3}{\frac {a^{2}-\lambda ^{2}}{a^{2}-b^{2}}}\Lambda \end{aligned}}}
Aquí también,
α
1
=
κ
2
{\displaystyle \alpha _{1}=\kappa ^{2}}
hace que
Δ
ϕ
+
κ
2
ϕ
=
0
{\displaystyle \Delta \phi +\kappa ^{2}\phi =0}
para la ecuación de Helmholtz, y
α
1
=
0
{\displaystyle \alpha _{1}=0}
lo hace para la ecuación de Laplace.[ 4] : 6
Si
α
2
{\displaystyle \alpha _{2}}
se reemplaza por
a
4
α
1
+
α
2
+
a
2
α
3
a
2
−
b
2
{\displaystyle {\tfrac {a^{4}\alpha _{1}+\alpha _{2}+a^{2}\alpha _{3}}{a^{2}-b^{2}}}}
y
α
3
{\displaystyle \alpha _{3}}
por
−
(
b
4
α
1
+
α
2
+
b
2
α
3
)
{\displaystyle -(b^{4}\alpha _{1}+\alpha _{2}+b^{2}\alpha _{3})}
, surgen las mismas ecuaciones diferenciales del enfoque de Moon y Spencer. Las ecuaciones diferenciales determinadas con ambos métodos solo se diferencian en el tamaño de la constante de separación
α
2
,
3
{\displaystyle \alpha _{2,3}}
.
Parametrización angular
Existe una parametrización alternativa que sigue de manera parecida la parametrización angular de las coordenadas esféricas :[ 6]
x
=
a
s
sin
θ
cos
φ
,
{\displaystyle x=as\sin \theta \cos \varphi ,}
y
=
b
s
sin
θ
sin
φ
,
{\displaystyle y=bs\sin \theta \sin \varphi ,}
z
=
c
s
cos
θ
.
{\displaystyle z=cs\cos \theta .}
Aquí,
s
>
0
{\displaystyle s>0}
parametriza los elipsoides concéntricos alrededor del origen y
θ
∈
[
0
,
π
]
{\displaystyle \theta \in [0,\pi ]}
y
φ
∈
[
0
,
2
π
]
{\displaystyle \varphi \in [0,2\pi ]}
son los ángulos polares y azimutales habituales de las coordenadas esféricas, respectivamente. El elemento de volumen correspondiente es
d
x
d
y
d
z
=
a
b
c
s
2
sin
θ
d
s
d
θ
d
φ
.
{\displaystyle dx\,dy\,dz=abc\,s^{2}\sin \theta \,ds\,d\theta \,d\varphi .}
Véase también
Referencias
↑ Dino Boccaletti, Prof. Giuseppe Pucacco (2003). Theory of Orbits: Volume 1: Integrable Systems and Non-perturbative Methods . Springer Science & Business Media. pp. 325 de 392. ISBN 9783540589631 . Consultado el 29 de julio de 2024 .
↑ a b c P. M. Morse, H. Feshbach (1953). Methods of Theoretical Physics, Part I . New York: McGraw-Hill.
↑ En Moon y Spencer (1971), p. 40, los componentes x y z se intercambian en comparación con la representación de Morse y Feshbach (1953), p. 663.
↑ a b c d e P. Moon, D.E. Spencer (1971). Field Theory Handbook (Including Coordinate Systems, Differential Equations and Their Solutions) . 2. Aufl. Berlín, Heidelberg, Nueva York: Springer Verlag. p. 3 ff. ISBN 3-540-02732-7 .
↑ Wolfgang Werner (2019). Springer Vieweg Verlag, ed. Vektoren und Tensoren als universelle Sprache in Physik und Technik (Tensoralgebra und Tensoranalysis) 1 . Wiesbaden. ISBN 978-3-658-25271-7 . doi :10.1007/978-3-658-25272-4 .
↑ «Ellipsoid Quadrupole Moment» .
Bibliografía
Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I . New York: McGraw-Hill. p. 663.
Zwillinger D (1992). Handbook of Integration . Boston, MA: Jones and Bartlett. p. 114. ISBN 0-86720-293-9 .
Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs . New York: Springer Verlag. pp. 101—102. LCCN 67025285 .
Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers . New York: McGraw-Hill. p. 176 . LCCN 59014456 .
Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry . New York: D. van Nostrand. pp. 178 —180. LCCN 55010911 .
Moon PH, Spencer DE (1988). «Ellipsoidal Coordinates (η, θ, λ)» . Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd, 3rd print edición). New York: Springer Verlag. pp. 40 —44 (Table 1.10). ISBN 0-387-02732-7 .
Convención inusual
Landau LD, Lifshitz EM, Pitaevskii LP (1984). Electrodynamics of Continuous Media (Volume 8 of the Course of Theoretical Physics ) (2nd edición). New York: Pergamon Press. pp. 19—29. ISBN 978-0-7506-2634-7 . Utiliza coordenadas (ξ, η, ζ), que tienen las unidades de distancia al cuadrado.
Enlaces externos