Una función se llama implícita cuando está definida mediante una ecuación de la forma
Por ejemplo, puede probarse que la siguiente ecuación define una función implícita en cierta región de entre las variables x e y:
Derivación
Para derivar una función implícita se usa la regla de la cadena; en el caso de la variable independiente, sin dificultad alguna, se deriva directamente; al derivar la variable dependiente se la considera como una función que a su vez depende de la variable independiente:
Dada una función , implícita, si queremos calcular la derivada de y respecto de x: .
Si consideramos es una función en términos de la variable independiente x y es una función en términos de la variable dependiente y, dado que , entonces para obtener la derivada:
Ejemplo
Obtener la derivada dee:
El término se puede considerar que son dos funciones, y por lo que se derivará como un producto:
El término se deriva como:
El término se deriva de forma normal como:
El valor constante 12, que no depende ni de x ni de y, tiene por derivada 0, como corresponde a un valor constante.
El término se puede considerar como un producto y se deriva como:
Al unir todos los términos se obtiene:
Ordenando:
Factorizando respecto a ( ) los valores son:
Finalmente despejando se obtiene la derivada de la función implícita:
Véase también
Referencias
- John B. FRALEIGH. Cálculo con geometría analítica. Fondo Educativo Interamericano, S.A. México D.F., 1984 ISBN 968-50-0127-8
Enlaces externos