Share to: share facebook share twitter share wa share telegram print page

Lema de Massera

En teoría de la estabilidad y control no lineal, el lema de Massera, denominado así por José Luis Massera, trata de la construcción de una función de Lyapunov para probar la estabilidad de un sistema dinámico.[1]​ El lema aparece en (Massera, 1949, p. 716) como el primer lema de la sección 12 y en una forma más general en (Massera, 1956, p. 195) como el lema 2. En 2004, el lema de Massera original para funciones de una sola variable fue extendido al caso multivariable, y el lema resultante fue usado para probar la estabilidad de los sistemas dinámicos cambiantes, donde una función de Lyapunov común describe la estabilidad de los múltiples modos y de las señales cambiantes.

Lema de Massera original

El lema de Massera original es usado en la construcción de una función de Lyapunov opuesta de la siguiente manera (también conocida como la construcción integral)

para un sistema dinámico asintóticamente estable cuya trayectoria estable comenzando desde es

El lema dice que:

Sea una función estrictamente decreciente, continua y positiva con cuando . Sea una función no decreciente, continua y positiva. Entonces existe una función tal que

  • y su derivada son funciones clase-K definidas para todo t ≥ 0
  • Existen constantes positivas k1, k2, tales que para cada función continua u que cumpla 0 ≤ u(t) ≤ g(t) para cada t ≥ 0,

Extensión a funciones multivariables

El lema de Massera para funciones de una sola variable fue extendido al caso multivariable por Vu y Liberzon.[2]

Sea una función estrictamente decreciente, continua y positiva con cuando . Sea una función no decreciente, continua y positiva. Entonces existe una función diferenciable tal que

  • y su derivada son funciones clase-K en .
  • Para cada entero positivo , existen constantes positivas k1, k2, tal que para cada función continua que cumpla
para cada ,

tenemos

Referencias

Notas

  1. Khalil, H.K. (2001), Nonlinear Systems, Prentice Hall, ISBN 0-13-067389-7 .
  2. Vu, L.; Liberzon, D. (2005), «Common Lyapunov functions for families of commuting nonlinear systems», Systems & Control Letters 54 (5): 405-416, doi:10.1016/j.sysconle.2004.09.006, consultado el 18 de julio de 2008.  .
Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 
Kembali kehalaman sebelumnya