Share to: share facebook share twitter share wa share telegram print page

 

Teorema de Gauss-Bonnet generalizado

En matemáticas, el teorema de Gauss-Bonnet generalizado presenta la característica de Euler de una variedad de Riemann cerrada como integral de cierto polinomio derivado de su curvatura. Es una generalización directa del teorema de Gauss-Bonnet a la dimensión par en general.

Definición

Sea M una variedad de Riemann compacta de la dimensión 2n y sea Ω la forma de curvatura de la conexión de Levi-Civita. Esto significa que Ω es -valorada en M. Tal Ω puede ser mirado como matriz anti-simétrica 2n×2n cuyas entradas sean 2-formas, así que es una matriz sobre el anillo conmutativo . Uno puede por lo tanto tomar el Pfaffiano de Ω Pf(Ω) que resulta ser una 2n-forma.

El teorema de Gauss-Bonnet generalizado establece que

donde χ denota la característica de Euler de M.

Otras generalizaciones

Como con el teorema de Gauss-Bonnet, hay generalizaciones cuando M es una variedad con borde.

Véase también

Enlaces externos

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya