Astrobiology Field LaboratoryAstrobiology Field Laboratory (en abrégé AFL ou Laboratoire d'astrobiologie martienne) est un projet de vaisseau spatial automatique de la NASA qui conduirait une recherche robotique de vie sur Mars[1],[2]. Généralités sur la missionCette mission, encore en phase de conception, atterrirait sur Mars et explorerait un site dont on pense qu'il est un habitat. Des exemples de tels sites sont des dépôts hydrothermaux actifs ou éteints, un lac asséché, ou un site polaire spécifique[3]. S'il est approuvé, le rover serait construit par le Jet Propulsion Laboratory de la NASA, sur la base conceptuelle du rover du Mars Science Laboratory, et emporterait des instruments orientés vers l'astrobiologie, et, idéalement, une carotteuse. Les prévisions originelles font état d'un lancement dès 2016[4], cependant de récentes contraintes budgétaires sont susceptibles de retarder la planification de façon significative[5]. MissionLe rover serait la première mission depuis les atterrisseurs du Programme Viking des années 1970 à procéder à des recherches de chimie associées avec la vie (biosignature), telles que les vies basées sur le carbone (en), en même temps que des molécules comprenant aussi bien du soufre que de l'azote. La stratégie de la mission serait de rechercher des zones habitables en suivant l'eau et en trouvant le carbone[1]. En particulier, il analyserait en détail des environnements géologiques que le Mars Science Laboratory de 2011 aura identifiés comme susceptibles de conduire à la vie sur Mars, ainsi que les signes de la vie passée et présente. Ces environnements pourraient comprendre des couches de grains sédimentaires fins, des dépôts minéraux des sources chaudes, des couches glacées près des pôles, ou des sites tels que les coulures où l'eau liquide a autrefois ruisselé, ou peut encore continuer de suinter à partir de glaçons en fusion. CalendrierL'AFL devrait logiquement être la prochaine plateforme de chantier de recherche, faisant suite à celles des projets du Mars Reconnaissance Orbiter lancé en 2005, de l'atterrisseur Phoenix (lancé en 2007), de Mars Science Laboratory (lancement en 2011), de Mars Science Orbiter 2016 (lancement prévu en 2016), et d'ExoMars (lancement prévu en 2016 également), tous relevant du même effort stratégique. Cette mission, encore à l'état préliminaire de proposition, n'a pas atteint ses premières phases de planification ni de financement, et elle subira à l'avenir des modifications consécutives aux multiples examens critiques des phases de la conception et de la mission. Il faut noter qu'avec une meilleure compréhension des résultats du prédécesseur, Mars Science Laboratory, le concept de la mission de l'AFL changera inévitablement, les ressources disponibles permettant une meilleure saisie des contraintes. Il existe de multiples variantes possibles de ce qui pourrait s'appeler l'AFL, et les différents scientifiques perçoivent ces variantes en fonction de contextes différents, et avec des systèmes de priorités différents. Cependant, la mission AFL et la charge utile devraient être élaborées sur les résultats technologiques et scientifiques des missions précédentes en fonction d'un processus de planification stratégique[1]. Le 'Groupe de Direction Scientifique' ('Science Steering Group' ou SSG) de l'AFL a élaboré un ensemble de stratégies et d'hypothèses de recherches susceptibles de favoriser la détection de biosignatures[1] :
Charge utileActuellement, les éléments de charge utile candidats au départ sont expressément limités aux matériels nécessaires à l'identification, à la charge hors-tout du rover et à la production d'énergie pour une telle mission. Le projet de charge utile comprend un système de manutention de précision et de traitement des échantillons, qui remplacerait et augmenterait les fonctionnalités et les capacités fournies par le système d'acquisition, de manutention et de traitement des échantillons faisant actuellement partie du rover du Mars Science Laboratory de 2009[1],[10]. La charge utile de l'AFL s'efforcera de minimiser toute détection conflictuelle positive de vie en incluant une succession d'instruments qui fourniraient au moins trois mesures analytiques de laboratoire se confirmant mutuellement[3]. Pour évaluer raisonnablement sur quelle base estimer la masse du rover, la charge utile prévisionnelle pourrait comprendre[1] :
Source d'énergieOn a proposé que l'AFL utilise des générateurs thermoélectriques à radioisotope (RTG) comme source d'énergie, identiques à ceux qui doivent être utilisés sur le Mars Science Laboratory[1]. La durée de vie prévue de la source d'énergie radioactive est d'une année martienne, soit approximativement deux années terrestres, avec une extension de mission qui durerait une année martienne supplémentaire. L'énergie solaire n'est pas une source suffisante pour les opérations à la surface de Mars parce que les systèmes d'énergie solaire ne peuvent pas opérer convenablement aux latitudes élevées de Mars, dans des zones assombries, des conditions empoussiérées ou pendant la durée de l'hiver. De plus, l'énergie solaire ne peut fournir d'énergie la nuit, limitant ainsi la capacité du rover à garder son système tiède, ce qui réduit l'espérance de vie des appareils électroniques. Les RTG peuvent fournir jour et nuit une énergie fiable en continu, et la chaleur dégagée peut être utilisée au moyen de tuyaux pour réchauffer les systèmes, libérant ainsi l'énergie électrique pour utiliser le véhicule et les instruments. Démarche scientifiqueBien que les justifications scientifiques actuelles de l'AFL n'incluent aucune prédéfinition des formes potentielles de vie qu'on pourrait trouver sur Mars, les suppositions suivantes ont été formulées[1] :
Dans la région où les opérations de surface seront conduites, on procédera à l'identification et la classification des environnements martiens (passés ou présents) avec leurs différents potentiels d'habitabilité et la caractérisation de leur contexte géologique. On évaluera quantitativement leur potentiel d'habitabilité par[1] :
Références
Voir aussiArticles connexesLiens externes |