Share to: share facebook share twitter share wa share telegram print page

 

Composition de fonctions

Exemple de composition de deux fonctions f et g.

La composition de fonctions (ou composition d’applications) est, en mathématiques, un procédé qui consiste, à partir de deux fonctions, à en construire une nouvelle. Pour cela, on utilise les images de la première fonction comme arguments pour la seconde (à condition que cela ait un sens). On parle alors de fonction composée (ou d'application composée).

Définition formelle

Soient X, Y et Z trois ensembles quelconques. Soient deux fonctions et . On définit la composée de f par g, notée , par

On applique ici f à l'argument x, puis on applique g au résultat.

On obtient ainsi une nouvelle fonction .

La notation se lit « g rond f », « f suivie de g » ou encore « g après f ». On note parfois pour .

Cette définition peut être visualisée par un diagramme commutatif.

Exemple d'incompatibilité des domaines

Soient les deux fonctions :

Ici, l'ensemble d'arrivée de f est . Or l'ensemble de départ de g est (il n'existe pas de nombre réel dont le carré soit strictement négatif). Stricto sensu, la fonction n'a donc pas de sens ici et seule en a un, où f1 est la fonction suivante, obtenue par restriction-corestriction de f :

Propriétés

Ici, on ne se préoccupe pas des problèmes de compatibilité des domaines des fonctions considérées.

  • La composition de fonctions n'est généralement pas commutative :
  • La composition de fonctions est associative :
  • La composition de fonctions n'est généralement pas distributive (sur un opérateur quelconque ) :
  • Si la fonction f est continue en x0 et la fonction g est continue en f(x0) alors est continue en x0.
  • Composition de deux fonctions f et g strictement monotones (le sens de variation obéit à une sorte de règle des signes) :
    • si f et g ont même sens de variation, leur composée est strictement croissante ;
    • si f et g ont des sens de variation différents, leur composée est strictement décroissante.
  • Dérivée d'une composition de fonctions dérivables :Voir l'article « Théorème de dérivation des fonctions composées ».
  • Réciproque d'une composée :

Puissances fonctionnelles

On conserve les notations ci-dessus. Si alors peut être composée avec elle-même et la composée est notée . Ainsi

et de manière plus générale :

.

On pose

est l'application identité de l'ensemble .

On peut étendre cette notation aux exposants entiers négatifs, à condition de supposer la fonction bijective (de dans lui-même). Alors, désigne l'application réciproque et pour tout entier , est la composée de par elle-même n fois.

La puissance d'une fonction est distincte de la multiplication des applications. Par exemple, sin2 désigne couramment le carré de la fonction sinus :

.

Il y a aussi une confusion possible entre l'inverse d'une fonction pour la multiplication et l'application réciproque.

On peut également s'intéresser aux racines carrées fonctionnelles, c'est-à-dire que l'on cherche, pour une fonction g donnée, une fonction f satisfaisant f(f(x)) = g(x) pour tout x. On note alors .[réf. nécessaire]

Autre notation

Au milieu du XXe siècle, quelques mathématiciens[réf. nécessaire] trouvèrent que la notation portait à confusion et décidèrent d'utiliser une notation post-fixée : xf pour f(x) et xfg pour .

Typographie

Le caractère Unicode « rond », « ∘ », est le caractère U+2218. En LaTeX, ce caractère est obtenu par la commande \circ.

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Lien externe

Yvan Monka, « Composition de fonctions », sur maths-et-tiques

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya