Une lenticelle (dérivé savant du latinlens, lentis, « lentille », en référence au relief de forme lenticulaire créé par cette structure) est une sorte de pore ou de canal traversant la masse du liège dans l'écorce des racines et des tiges lignifiées des arbres, mettant le suber en communication avec l'atmosphère et formant des aspérités, parfois colorées. On en trouve aussi parfois à la surface de certains fruits, on parle alors de « rugosité ».
Elles peuvent être solitaires ou en rangées, rondes, ovales ou allongées en forme de stries, le nombre et la forme des lenticelles variant d'une espèce à l'autre[1]. Elles couvrent 2 à 3 % de la surface des tiges[2]. Leurs fonctions sont encore mal comprises, mais elles permettent des échanges d'oxygène, de vapeur d'eau (rejet d'une part de cette vapeur d'eau interne via la transpiration)[3] et de composés organiques volatils entre l'arbre et l'atmosphère ou l'eau (rosée, condensation de brume, neige fondante ou pluie ruisselant sur l'écorce). Un piégeage lenticellaire de certains polluants de l'air semble possible, qui pourrait notamment contribuer à l'accumulation de certains métaux dans le suber puis à leur piégeage durable dans les cernes du bois. À l'image des crevasses formées par le rhytidome sur les arbres âgés ou des stomates présentes sur les feuilles, les lenticelles sont des prises d'air du parenchyme lacuneux (réseau de lacunes situées entre les cellules plus internes, par lesquelles les gaz transitent au cœur de la feuille ou de la tige). Une adaptation des plantes à l'hydromorphie (zones marécageuses, milieux de taïga et de toundra) est le développement de lenticelles hypertrophiées et de ce réseau en aérenchyme qui met en relation les lacunes des organes aériens avec celles des racines qui manquent d'oxygène[4].
Rôles
Les lenticelles permettent les échanges gazeux entre l'atmosphère et les tissus internes des végétaux, notamment pour des arbres dont les racines sont provisoirement inondées et privées d'oxygène[5].
Elles peuvent servir à absorber les gaz, tel le CO2 ou l'oxygène, à éliminer des gaz toxiques, à s'adapter à un ennoiement permanent (on assiste alors en bas du tronc au développement de lenticelles hypertrophiées, de forme nodulaire)[6],[7],[8],[9],[10].
Le Cerisier a des lenticelles sur son tronc qui sont plus visibles que sur le Pommier.
Formation
Les lenticelles se forment pendant le développement de l'écorce. Celle-ci se fissure par endroits faisant apparaître une lenticelle après la formation d'un phellogène.
Les lenticelles ou pores de liège correspondent à des régions parenchymateuses du périderme dans lesquelles des cellules subérifiées du liège (cellules mortes et imperméables) se désolidarisent, laissant des méats entre elles, permettant des échanges gazeux avec l'atmosphère externe. Sur les tiges jeunes non lignifiées et sur les feuilles, ces échanges se font avec les stomates[11]. Dans les tiges lignifiées, le phellogène met en place vers l'extérieur des cellules qui se différencient en parenchyme (le tissu de soutien) qui, en se divisant abondamment, font pression sur les tissus extérieurs jusqu'à désolidariser les cellules plus ou moins subérifiées et déchirer l'épiderme. Ces régions parenchymateuses forment ainsi comme des verrues qui, vues à un faible grossissement, semblent crever l'épiderme, créant une fissure dans le périderme[12],[13].
Fruits
Les lenticelles sont également présentes sur de nombreux fruits comme la pomme, la poire, l'olive, etc. Sur la poire, elles peuvent servir d'indicateur sur la maturité du fruit, leur brunissement signifiant que le fruit est mûr[14].
Certaines bactéries ou champignons peuvent pénétrer dans le fruit via les lenticelles.
Notes et références
↑Helga Hofmann, Arbres, Hachette Pratique, , p. 16
↑(en) Joachim W. Kadereit, Progress in Botany: Genetics Physiology Systematics Ecology, Springer Science & Business Media, , p. 484
↑ Dans les pommes, les lenticelles représentent jusqu'à 21 % de la transpiration. Cf (en) Armando Carrillo-Lopez, Elhadi M Yahia, Postharvest Physiology and Biochemistry of Fruits and Vegetables, Elsevier Science, , p. 116.
↑Marc-André Selosse, L'origine du monde. Une histoire naturelle du sol à l'intention de ceux qui le piétinent, Actes Sud Nature, , p. 151.
↑(en) Langenfeld-Heyser R (1997) Physiological functions of lenticels. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees-contributions to modern tree physiology. Backhuys, Leiden, p.43–46
↑Groh B, Hubner C, Lendzian KJ (2002) Water and oxygen permeanceof phellems isolated from trees: The role of waxes and lenticels ; Planta 215, 794-801
↑Vartapetian BB, Jackson M (1997) Plant adaptations to anaerobic stress. Annals of Botany 79 , 3-20
↑Jackson MB, Colmer TD. 2005. Response and adaptation by plants to flooding stress. Annals of Botany 96, 501-505
↑Folzer H, Dat J, Capelli N, Rieffel D, Badot P-M. (2006) Response to flooding of sessile oak: An integrative study. Tree Physiology 26, 759–766
↑Jean-Claude Roland, Françoise Roland, François Bouteau, Hayat El Maarouf Bouteau, Atlas de biologie végétale, Dunod, , p. 64
↑Jules Bouharmont, Peter H Raven, Georges B Johnson, Pierre L Masson, Kenneth A Mason, Jonathan B Losos, Susan R Singer, Biologie, De Boeck Supérieur, , p. 748
↑(en) Ray F. Evert, Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, John Wiley & Sons, , p. 441-442
(en) Beate Groh, Carin Hübner & Klaus J. Lendzian, « Water and oxygen permeance of phellems isolated from trees: the role of waxes and lenticels », Planta, vol. 215, , p. 794–801 (DOI10.1007/s00425-002-0811-8)
(en) Yeqing Guan, Ruifeng Chang, Guojian Liu, Yi Wang, Ting Wu, Zhenhai Han & Xinzhong Zhang, « Role of lenticels and microcracks on susceptibility of apple fruit to Botryosphaeria dothidea », European Journal of Plant Pathology, vol. 143, , p. 317–330 (DOI10.1007/s10658-015-0682-z)