En algèbre commutative, la profondeur d'un module sur un anneau commutatif anneau est un concept qui intervient notamment dans la définition d'un anneau de Cohen-Macaulay : ce dernier est caractérisé par le fait que pour tout idéal premier de , l'anneau local est de profondeur (en tant que -module) égale à sa dimension de Krull, au sens des définitions données ci-dessous.
Une suite d'éléments de est une une suite -régulière si pour tout , l'élément est régulier pour le module .
Lorsque est un anneau noethérien, est de type fini et est un idéal de tel que , le plus grand entier tel qu'il existe une suite -régulière d'éléments appartenant à est appelé la -profondeur de . Si de plus est local d'idéal maximal , la -profondeur de est simplement appelée la profondeur de .
Un anneau noethérien est un anneau de Cohen-Macaulay si pour tout idéal premier de , l'anneau local est de profondeur (en tant que -module) égale à sa dimension de Krull.
Soit le localisé de en l'idéal maximal engendré par . C'est un anneau de dimension 1, mais de profondeur nulle car tout élément de son idéal maximal est diviseur de 0.
Propriétés
Soient , des anneaux locaux noethériens, soit un morphisme plat et un -module de type fini. Alors