Théorème japonais de CarnotLe théorème japonais de Carnot est un théorème de géométrie euclidienne dû à Lazare Nicolas Marguerite Carnot, portant sur une égalité algébrique de distances dans une construction faisant appel au cercle inscrit et au cercle circonscrit à un triangle[1],[2]. HistoireEn 1800, un samouraï anonyme accrochait au mur d'un temple une tablette de bois sur laquelle était gravé un sangaku, problème de géométrie dédié à une divinité (un kami) et proposé à la sagacité des fidèles. En 1803, Carnot publiait sa Géométrie de position. Hasard de l'Histoire, un théorème de cet ouvrage[3] permet de résoudre élégamment le sangaku précité. ÉnoncéThéorème de Carnot[4],[5],[6]. — Soit un triangle ABC et son cercle circonscrit de centre D et de rayon R. La somme des distances « signées » du centre D aux côtés du triangle est donnée par : où r est le rayon du cercle inscrit au triangle et F, G, H les projetés orthogonaux de D respectivement sur les côtés [AC], [AB] et [BC].
Notes et références
|