Csatorna-alagút
A Csatorna-alagút (angolul Channel Tunnel) vagy Csalagút (Chunnel) egy 50,5 km hosszú vasúti alagút a La Manche csatorna alatt a Doveri-szorosnál, amely az angliai Dover melletti Folkestone-t (é. sz. 51° 05′ 49″, k. h. 1° 09′ 21″51.096944°N 1.155833°E) köti össze a franciaországi Calais közelében fekvő Coquelles városával (é. sz. 50° 55′ 22″, k. h. 1° 46′ 50″50.922778°N 1.780556°E). Az építése 1988-ban kezdődött, a hatalmas projekt többször megakadt, végül 1994-ben sikerült befejezni az alagutat. Ez a világ harmadik leghosszabb alagútja, a japán Szeikan-alagút és a svájci Gotthárd-bázisalagút után. A Szeikan-alagút összességében hosszabb, de tenger alatti része rövidebb; tehát a Csatorna-alagút a világ leghosszabb tenger alatti alagútjának tekinthető 37,9 km-rel. Az alagutat az Eurotunnel cég üzemelteti. Az American Society of Civil Engineers kijelentette, hogy az alagút egyike a modern világ hét csodájának. ElőzményekA franciák a napóleoni háborúk idején, 1802-ben kezdtek az alagútépítés lehetőségével foglalkozni. A francia hadsereg száraz lábbal szeretett volna átkelni az angol flotta által lezárt La Manche csatorna alatt. A 19. században több javaslat született az állandó kapcsolat létesítésére. 1880-ban Frederick Beaumont ezredes vezetésével a La Manche csatorna mindkét oldaláról megkezdődött az alagútépítés. Az angol oldalon a Thomas English tervezte alagútfúró géppel (!) már elkészült 2 km alagút, amikor 1883-ban a brit hadsereg vezetése – egy lehetséges inváziótól való félelmében – leállíttatta a Beaumont alagút építését. 1922-ben 128 méter feltáró alagutat fúrtak a Whitaker által épített géppel Dovernél. 1975-ben egy modern Priestley alagútfúró pajzzsal próbaképpen megépült 250 méter alagút a mai szervizalagút nyomvonalában. A sikeres alagútfúrás ellenére a munkát gazdasági nehézségek miatt abbahagyták. A kezdetekA nyolcvanas években mind a brit, mind a francia oldalon összejött a politikai akarat. Magánbefektetők hajlandónak mutatkoztak az akkor 6 milliárd fontra becsült költségeket fedezni. Több terv is született a két földrész kapcsolatára, ezek közt nem csak alagút, hanem híd, illetve kombinált híd és alagút-összeköttetés is akadt, több tervben pedig közúti, illetve vegyes közút/vasút forgalom is szerepelt. A híd túl költséges megoldás lett volna, a közúti változatoknál pedig a kipufogógáz elvezetéséhez szükséges infrastruktúra kiépítésére lett volna szükség kürtők formájában, melyek mesterséges szigetként a ködös csatornán balesetveszélyesek lettek volna. Ezek után maradt a vasúti alagút terve, ahol a vasúton közúti gépjárművek is szállíthatóak. Margaret Thatcher akkori brit miniszterelnök és François Mitterrand akkori francia államfő 1986-ban írták alá a canterburyi egyezményt, ami lehetővé tette az építést. Ugyanakkor 55 éves koncessziós szerződést kötöttek egy brit és egy francia csoporttal. Ezekből alakult az Eurotunnel, az alagút üzemeltetője, és a TML (Transmanche-Link), a rendszer építője. A TML kapta a tervezésre, kivitelezésre, valamint gépészeti és elektromos berendezések, vasúti járművek szállítására szolgáló szerződést. A TML csoporton belül mind a francia, mind az angol oldalon külön tervező és kivitelező csoportot hoztak létre. Ebből adódtak az alagutak és műtárgyak tervezésében és kivitelezésében jelentkező jelentős eltérések. A fő cél a Dover és Calais között ingázó komphajókon lebonyolított személy- és teherautó-forgalom minél nagyobb részének átterelése az alagútba. Az alagútA közhiedelemmel ellentétben nem egy alagút, hanem egy alagútrendszer épült meg a La Manche csatorna alatt. Az alagútrendszer két, 7,6 m belső átmérőjű vonalalagútból és egy 4,8 m belső átmérőjű szervizalagútból áll. A teljes alagúthossz 3 × 50,5 km, azaz 151,5 km. A tenger alatti alagutakból 21,9 km az angol szektorban, 16 km pedig a francia szektorban fekszik.
A tényleges alagúthosszakat később a mindkét oldalról szembe hajtott pajzsok tényleges fúrási sebessége határozta meg. Az alagutak gazdaságos megépíthetőségéhez sikerült megtalálni a megfelelő geológiai környezetet. A kutatások azt mutatták, hogy a legalkalmasabb zóna a mészmárga réteg, vízáteresztő képessége 10−7 m/s nagyságrendű, tehát gyakorlatilag vízzáró. Nem voltak ilyen szerencsések a francia oldal mérnökei. A mészmárgát több vetőzóna szeli át, majd a francia part közelében alábukik. Az alagút itt már csak töredezett kréta rétegben haladhat. Ez a geológiai különbség vezetett oda, hogy a francia oldalon zárt aktív földnyomás megtámasztású pajzsok használatára volt szükség. Ezek a gépek nagyobb permeabilitású kőzeteken is képesek áthaladni, azonban még nyitott üzemmódban is lényegesen lassúbbak a teleszkópos kettős pajzsoknál. Az angol oldalon a kedvezőbb geológiai adottság megengedte a nyitott, teleszkópos kettős pajzsok használatát. A kettős pajzs lényegében két pajzs egymás után összeépítve. A hátsó pajzsban vannak a falazati szegmenseket építés közben a helyükön tartó hidraulikus sajtók és két hatalmas feszítőlap, amelyeket szintén sajtók segítségével befeszítenek a már kifúrt alagútba. Erre támaszkodva nyomja magát előre az első pajzs és közben a homlokon a vágófejjel fejti a kőzetet. A típus előnye, hogy a fejtés és a falazatépítés egy időben történik. Ez a pajzs megfelelő geológiai viszonyok között a leggyorsabb gép.
Az angol oldalon a szervizalagutak megépítéséhez két, a vonalalagutakhoz négy pajzsot használtak. A francia oldalon öt pajzsot használtak. Itt a viszonylag rövid szárazföldi vonalalagutakat egy géppel építették meg.
A falazatAz alagutak falazatát mind a francia, mind az angol oldalon előre gyártott vasbeton elemekből tervezték. Jelentős különbség volt azonban a részletekben. Az angol oldalon az alacsony permeabilitású mészmárgával számolva szigeteletlen, csavarkapcsolat nélküli - a londoni földalatti vasútvonalak építésénél jól bevált - befeszített falazati gyűrűket terveztek. A francia oldalon erre nem volt lehetőség. A falazatot a maximum 8 baros víznyomásra kellett megtervezni, ezért az általában szokásos gumiprofil szigeteléssel ellátott - ma szinte mindenhol használt - csavarozott vasbeton falazatot tervezték be. Az angol befeszített falazat sajátossága, hogy – a budapesti metróvonalaknál is bevált módon – az elemek között nincs csavarkapcsolat. A vonalalagutak 7,6 m névleges belső átmérőjű gyűrű nyolc nagyméretű szegmensből és egy záróelemből áll. Az elemek elhelyezése mindig azonos. Az ideiglenes vasúti vágányt hordó talpelemre szereltek két oldalon padkás alsó elemeket. A padkára helyezett síneken gurult a pajzs kiszolgáló kocsisora; ezt használták gyaloglásra, később pedig ez épült ki menekülő-, illetve szervizjárdává. A többi elem azonos. Az ékes kialakítású záróelem rövidebb, mint a gyűrű. Utolsóként, egy erre a célra kialakított sajtóval nyomták be, ezzel a faroklemez nélküli pajzs mögött a gyűrűt nekifeszítették a kőzetnek. A gyűrű befeszítése után injektálás nélkül is azonnal állékony volt. A várt geológiai viszonyok között a betonblokkok hátulján levő 1 cm vastag betonpadokkal kialakított hátűrt kellett csak injektálni a vízzáróság növelésére. Az angol tervezők a vízzáró márgában minimális víz beszivárgást vártak. A kismennyiségű beszivárgó vizet az alagút üzemeltetése közben egy drénrendszerrel elvezették a két zsompkamrába, innen pedig a felszínre szivattyúzzák. A falazat fugáiban megjelenő szivárgó vizeket bepattintott műanyag elemekkel vezetik le a drénrendszerbe. A befeszített falazat jó kőzetviszonyok között igen gyors építést tesz lehetővé. A szervizalagút falazatát azonos filozófiával tervezték.
MST (Marine Service Tunnel) = tengeralatti szervizalagút; LST (Land Service Tunnel)= szárazföldi szervizalagút; MRT (Marine Running Tunnel) = tengeralatti vonatalagút; LRT (Land Running Tunnel) = szárazföld alatti vonatalagút A táblázat gondosabb tanulmányozásakor kiderül, hogy a szárazföld alatt épült alagutak falazata lényegesen vastagabb, mint a tenger alattiaké. Az anomália úgy keletkezett, hogy nem sikerült megegyezni a tervezéshez használandó geotechnikai paraméterekben, ezért az illetékes parlamenti bizottság úgy döntött, hogy a maximális nyomást kell figyelembe venni… Alkalmaztak különleges esetekben gömbgrafitos öntöttvas (SGI Spherical Graphite Iron) falazatot is. A keresztező kamra közelében, ahol a két alagút 2,5 m-re megközelíti egymást, az előbb érkező északi vonatalagút utolsó 80 méterét öntöttvas falazattal építették. A falazatot ezenfelül a külső oldalon 6 m hosszú kőzetcsavarokkal stabilizálták. Öntöttvasból készültek a keresztalagutak kitörési helyein a vasbetonelemek helyére beszerelt speciális nyitókészlet elemek, valamint a dugattyúhatást elvezető szellőző alagutak is. Az alagútban 120 km/óra sebességgel haladó vonatok előtt összetorlódó levegő elvezetésére a vonalalagutakat 250 méterenként 2 méter átmérőjű, 21 méter hosszú szellőzőalagúttal kötötték össze. A vonalalagutakat 375 méterenként 10 méter hosszú 3,3 méter belső átmérőjű átjáró, vagy más néven menekülőfolyosók kötik össze a szervizalagúttal. A folyosókban légzáró ajtók vezetnek az enyhe levegő túlnyomással szellőztetett, ezért füstmentes szervizalagútba. A 2 × 130 darab menekülőfolyosó közelében hasonló átmérőjű műszerkamrák és elektromos alállomások is épültek. MűtárgyakA nagyobb alagúti műtárgyak közül említést érdemel a két, tenger alatti 164 méter hosszú, 21,2 méter széles és 18 méter magas keresztezőműtárgy, mely vonatok egyik alagútból a másikba való átterelhetőségét biztosítja. Az angol oldalon a szervizalagutak megépítéséhez két, a vonalalagutakhoz négy pajzsot, míg a francia oldalon öt pajzsot használtak. Itt a viszonylag rövid szárazföldi vonalalagutakat egy géppel építették meg. Az angol alagútszakaszon két hatalmas szivattyúállomás is épült az alagútba beszivárgó vizek eltávolítására. Az angliai Folkestone melletti Cheritonban, illetve a francia oldalon a Calais melletti Coquelles-ban épült vasúti terminálok rámpáikkal bonyolítják le a járművek fel- és lehajtását a kompvonatokra. Ugyanitt hurokvágányok is kiépültek a csak az alagúton áthaladó szerelvények gyors visszafordulásáért. Az alagútépítés során a brit oldalon kitermelt, közel ötmillió köbméter holt kőzetet egy Dover közeli mesterséges lagúnában halmozták fel, mely feltöltés az építkezés után Samphire Hoe Country Park néven közparkká vált, de itt található az alagút légcserélő rendszerének brit oldali külső szellőztető egysége is. Légcserélőt a francia oldalon is létesítettek a tengerparthoz közeli szárazföldön. Speciális járművekA szervizalagútban erre kifejlesztett különleges járművek közlekednek, amelyeket mind karbantartáskor, mind mentéskor használni lehet: a szimmetrikus autóbuszokra emlékeztető járműveket a Mercedes és a NAW cégek gyártották, a vonatokhoz hasonlóan mindkét végükön vezetőfülkékkel rendelkeznek, hogy oda-vissza haladni tudjanak, a közepükben pedig cserélhető karbantartó, tűzoltó és életmentő funkciójú konténerek, avagy betétrészek kerülnek elhelyezésre.[1] GördülőállományAz Eurostar járatai az alagúton keresztül Párizst és Brüsszelt kötik össze Londonnal. Az 1994 novemberében forgalomba helyezett TGV technológiájú TGV TMST / British Rail 373 típusú motorvonatok egyébként 300 km/h-s sebességét az alagútban 140 km/h-ban maximálták. Mind a személy-, mind a teherautókat külön erre a célra tervezett 775 méter hosszú kompvonatok (Eurotunnel Shuttle train) szállítják át az alagúton. A Csatorna-alagúton közlekedő vonatok zárt ingavonatok, mindkét végükön vonófejjel. Háromféle szerelvény közlekedik: KamionszállítóA teherautókat szállító kompvonatok nyitottak, rácsos acélszerkezet felépítménnyel. A teherautósofőröket a vonathoz tartozó étkezőkocsiban utaztatják. Ennek részben az az oka, hogy a kiélezett versenyhelyzetben a komphajókon bevett szokásoknak megfelelő színvonalú szolgáltatást biztosíthassanak a sofőröknek. Személyautó-szállítóA személyautók szállítására tervezett vonatok zárt vagonokkal készültek, amelyeket a kocsik behajtása után leereszthető, tűzálló falakkal osztanak szakaszokra. Az autószállító kocsik két szintesek. A vezető és az utasok a kocsikban maradnak. A mindössze 33 perces út alatt az utasok kiszállhatnak, pihenhetnek, nézelődhetnek. A szerelvény teljes hosszában átjárható, de indulás előtt a kocsik közötti redőnyös átjárókat lezárják a tűzveszély miatt. Az elválasztó falak szélső ajtajain gyalogosan át lehet járni. A két ajtó nem lehet egyszerre nyitva, zsilipszerűen működik, így egyszerre csak egy ember mehet át az egyik vagonból a másikba. BuszszállítóA felépítményének kialakítása személyautó-szállító kocsikhoz hasonló, de csupán egy szintes. Az emeletes buszok is elférnek benne. A kisteherautók és a furgonok is ebben utaznak. KöltségeA tervezett 6 helyett 10 milliárd fontba került. Az alagútrészben a költségtúllépés jelentéktelen volt. A tervezettnél sokkal nagyobb költségek a vasúti vagonok és egyéb berendezések beszerzésénél keletkeztek, főleg a tűzbiztonsági követelmények szigorítása miatt. Forgalom
Teherforgalom
A jövő2010. október 18-án haladt át az alagúton az első német nagysebességű ICE szerelvény. A Deutsche Bahn már régóta tervezi, hogy közvetlen londoni járatokat indítson Németország felől. Ehhez azonban teljesítenie kell a Csalagútra vonatkozó szigorú biztonsági előírásokat. Az itt közlekedő Eurostar vonatokat az alagútban való biztonságos közlekedéshez tervezték. Teljes hosszában átjárható, és hiba esetén egy vonófej is elég, hogy kivontassa a szerelvényt az alagútból. A menekülőjáratok egymástól való távolsága pont a vonat hosszával egyenlő. Ezeket a feltételeket a két 200 m-es DB 407 sorozatjelű Siemens Velaro egység összekapcsolásával fogják elérni. Ha az előzetes tesztek és vizsgálatok eredményesek lesznek, akkor 2016 decemberétől megindulhat a menetrendszerű forgalom Frankfurt, Köln és London között.[7] A közvetlen járattal a London-Köln távolság 3 óra 55 perc lenne, és a vonatok a városközpontban található pályaudvarokra érkeznének be, míg a repülőterek a város szélén vannak.[8] Érdekességek
Irodalom
Jegyzetek
ForrásokTovábbi információkA Wikimédia Commons tartalmaz Csatorna-alagút témájú médiaállományokat.
|