La proteina brachiuro (dal greco βραχύς, "corto" e ουρά, "coda") è una proteina che nell'uomo, è codificata dal gene TBXT (fattore T trascrizione di T-box).[1][2]
La proteina brachiuro funziona come un fattore di trascrizione all'interno della famiglia di geni T-box.[3] Gli omologhi della proteina brachiuro sono stati trovati in tutti gli animali bilateri o bilateria che sono stati sottoposti a screening, così come lo cnidario di acqua dolce Hydra.[3]
Storia
La mutazione brachiuro è stata descritta per la prima volta nei topi da Nadezhda Alexandrovna Dobrovolskaya-Zavadskaya nel 1927 come una mutazione che ha colpito la lunghezza della coda e le vertebre sacrali negli animali eterozigoti. Negli animali omozigoti la mutazione brachiuro è letale intorno al 10 ° giorno embrionale a causa di difetti nella formazione del mesoderma, della differenziazione della notocorda e dell'assenza di strutture posteriori alla gemma degli arti anteriori (Dobrovolskaïa-Zavadskaïa, 1927).
Nel 2018 HGNC ha aggiornato il nome del gene umano da T a TBXT, presumibilmente per superare le difficoltà associate alla ricerca di un simbolo del gene a singola lettera. Si presume che anche la nomenclatura dei topi verrà aggiornata a tempo opportuno.
Il gene T del topo è stato clonato da Bernhard Herrmann e colleghi[4] è stato dimostrato che questo gene codifica un fattore di trascrizione nucleare embrionale di 436 amminoacidi. T si lega a uno specifico elemento di DNA, una sequenza TCACACCT quasi palindromica attraverso una regione nel suo N-terminale, chiamata T-box. Il T è il membro fondatore della famiglia T-box che nei mammiferi consiste in 18 geni T-box.
La struttura cristallina della proteina umana brachyury è stata definita nel 2017 da Opher Gileadi e colleghi dello Structural Genomics Consortium di Oxford.[5]
Funzione
Il gene brachiuro sembra avere un ruolo conservato nella definizione della linea mediana di un organismo bilaterale,[6] e quindi nell'istituzione dell'asse antero-posteriore; questa funzione è evidente nei cordati e nei molluschi.[7]
Il suo ruolo ancestrale, o almeno il ruolo che svolge negli Cnidaria, sembra essere fondamentale nella definizione del blastopore.[3]
Definisce, inoltre, il mesoderma durante la gastrulazione.[8]
Il gene T è necessario per i normali movimenti delle cellule morfogenetiche mesodermiche durante gastrulazione.[9]
Le tecniche basate sulla coltura tissutale hanno dimostrato che uno dei suoi ruoli potrebbe essere quello di controllare la velocità delle cellule mentre lasciano la striscia primitiva.[10][11]
È stato anche dimostrato che il brachiuro aiuta a stabilire il modello vertebrale cervicale durante lo sviluppo fetale. Il numero di vertebre cervicali è altamente conservato tra tutti i mammiferi; tuttavia una mutazione spontanea in questo gene è stata associata allo sviluppo di sei o meno vertebre cervicali invece delle solite sette nella displasia vertebrale e spinale (VSD).[12]
Questa mutazione, infatti, comporta la sostituzione di una citosina con una guanina al nucleotide 189 del gene (C189G), che provoca una sostituzione dell'aminoacido isoleucina a metionina in posizione 63 nella proteina codificata.
Il fattore di trascrizione è codificato dal gene T ed è importante nell'embrione normale per lo sviluppo del mesoderma posteriore.[13]
Un tessuto embrionale che darà origine a somiti che successivamente danno origine alle vertebre e la coda.[14]
Questa mutazione può nei gatti determinare incontinenza fecale e/o urinaria, mentre nei cani sembra essere associata al tratto coda corta o assente. Inoltre questa mutazione nei cani non altera la libido e le capacità riproduttive degli stessi.[15]
Mutazione T-box nei cani
Le razze di cani differiscono anche per i vari fenotipi della coda; inoltre, esistono cani congenitamente a coda corta o del tutto assente in molte razze. La lunghezza della coda dipende dal numero delle vertebre caudali, che possono variare significativamente tra i vari soggetti. Diverse razze di cani mostrano code molto corte (brachiuri) o addirittura presentano una completa assenza delle vertebre della coda (anuri).[16]
Questa condizione è dovuta alla mutazione del gene del fattore di trascrizione T-box T (C189G), mutazione descritta inizialmente solo nel welsh corgi pembroke coda mozza.[16]
Va però anche detto che la coda brachiura o anura è determinata da molteplici modelli di eredità o variazioni di penetranza.
In uno studio condotto su 17 razze naturalmente brachiure, 6 di queste non mostravano una correlazione con il gene T-box T (C189G); inoltre è stato visto che questa mutazione non è mai presente in forma omozigote, suggerendo che questa condizione sia letale;[17] infatti quando entrambi i genitori di cani di razza Västgötaspets sono portatori di questa mutazione, le cucciolate diminuiscono del 29%.[16]
Razze anure o brachiure
Queste sono le 17 razze con la mutazione C189G:[16]
Dai risultati di questo studio si evince che la mutazione del gene T è presente in molti ma non tutti i cani a coda corta e in questo caso è probabile che altri fattori genetici regolano la lunghezza della coda.[16]
Vari test genetici di laboratorio che utilizzano la PCR-RFLP, permettono di stabilire se il tratto anuro è congenito o acquisito con la pratica, ovunque proibita, della caudicectomia.[15]
Gatti anuri o brachiuri
Più di un gene è responsabile della soppressione della coda nei gatti; la ricerca è incompleta, ma è noto che il Bobtail giapponese e le razze affini hanno una mutazione diversa da quella riscontrata nel Manx e nei suoi derivati.
^ Lartillot N, Lespinet O, Vervoort M, Adoutte A, Expression pattern of Brachyury in the mollusc Patella vulgata suggests a conserved role in the establishment of the AP axis in Bilateria, in Development, vol. 129, n. 6, marzo 2002, pp. 1411-21, PMID11880350.
^ Wilson V, Manson L, Skarnes WC, Beddington RS, The T gene is necessary for normal mesodermal morphogenetic cell movements during gastrulation, in Development, vol. 121, n. 3, marzo 1995, pp. 877-86, PMID7720590.