Il primo a descrivere sintesi e proprietà del fluoruro di glucinio (denominazione ottocentesca per il berillio) fu Paul Lebeau nel 1898.[6] Lebeau fece reagire l'idrossido di glucinio con acido fluoridrico ricavando l'ossifluoruro di glucinio; questo fu poi seccato ad alta temperatura in corrente di acido fluoridrico permettendo di isolare BeF2 anidro.
Sintesi
Il fluoruro di berillio si prepara a partire dall'idrossido di berillio grezzo derivante dalla lavorazione di minerali di berillio (berillo o bertrandite). L'idrossido di berillio è dapprima trattato con una soluzione di idrogenodifluoruro d'ammonio ottenendo il tetrafluoroberillato d'ammonio. Quest'ultimo è quindi riscaldato ad alta temperatura ottenendo così BeF2 anidro.[7][8]
Be(OH)2 + 2 (NH4)HF2 → (NH4)2[BeF4] + 2 H2O
(NH4)2[BeF4] → 2 NH4F + BeF2
Struttura
Il fluoruro di berillio in condizioni normali è un solido vetroso e con una struttura simile alla silice vetrosa: ogni atomo di berillio è tetracoordinato a quattro atomi di fluoro con geometria tetraedrica quasi regolare (Be sp3), e ciascun atomo di fluoro è bicoordinato a due atomi di berillio. Il fluoruro di berillio è difficile da cristallizzare ma, analogamente al quarzo, può dar luogo a varie forme cristalline che somigliano ciascuna alle modificazioni allotropiche di SiO2: quarzo-α, quarzo-β, cristobalite e tridimite.[9] Nella forma analoga al quarzo-α la distanza Be–F risulta 154,2 pm.[10] Passando ai fluoruri degli elementi che seguono il berillio nel suo gruppo, la struttura cristallina cambia: è del tipo rutilo per MgF2 e del tipo fluorite per CaF2.[11]
In fase liquida BeF2 mostra una struttura dove il berillio ha una coordinazione tetraedrica fluttuante, con comportamento che somiglia per alcuni versi a quello dell'acqua allo stato liquido, o del quarzo fuso.[14] Questo stato fuso conduce la corrente elettrica molto poco e anche per questo BeF2 è considerato un composto essenzialmente covalente.[15]
Il fluoruro di berillio in fase vapore è costituito da molecole discrete BeF2 con disposizione lineare (simmetriaD∞h)[16] e una distanza Be–F di 137,4 pm,[17] valore decisamente minore della somma dei raggi ionici efficaci di Be++ e F – (178 pm);[18] la discrepanza con la somma dei raggi covalenti (153 pm)[19] è minore, ma significativa.
L'accorciamento rispetto al singolo legame ionico o al sin golo legame covalente tra Be e F indica un ulteriore contributo di legame; in termini di teoria del legame di valenza si può descrivere la molecola, attraverso la risonanza, con forme limite che presentano legami covalenti polari di tipo σ ed anche di tipo π tra F e Be:[20]
F – Be++ F – ↔ F–Be+ F – ↔ F – Be+–F ↔ F–Be–F ↔ F+=Be––F ↔ F–Be–=F+ ↔ F+=Be2–=F+
La molecola BeF2 è isoelettonica sia con CO2, che con SiO2, con l'atomo di berillio ibridato sp.[21] Il suo comportamento nel passaggio a stati condensati (liquido o solido) somiglia a quello della silice, in cui l'atomo centrale (Si) è tetraedrico e tetracoordinato (sp3), come qui l'atomo di berillio. Questo a differenza di quello di C del ghiaccio secco in cui il carbonio è bicoordinato (C sp) in molecole discrete.
Proprietà e reattività
Il fluoruro di berillio è un composto termodinamicamente stabilissimo: ΔHƒ° = -1026,75 kJ/mol,[22] appena un po' meno di MgF2 (-1.124,2 kJ/mol),[23] cioè del fluoruro dell'elemento seguente nello stesso gruppo. In condizioni ambiente si presenta come un solido igroscopico[24] inodore che fuma in presenza di umidità idrolizzandosi. In acqua è molto solubile e si scioglie formando inizialmente BeF2(H2O)2, [BeF(H2O)3]+ e successivamente [Be(H2O)4]2+ ed anche altri ioni idratati tra i quali BeF+, BeF3– e BeF42–. Queste reazioni di idrolisi impediscono di isolare BeF2 da soluzioni acquose.[25][5][8] La facile solubilità di BeF2 è connessa al raggio ionico efficace dello ione Be++, che è molto piccolo (45 pm)[18] e che quindi si idrata molto meglio in soluzione acquosa, e tale raggio è parecchio diverso da quello di F– (133 pm); per confronto, quello di Mg++ ammonta a 72 pm (decisamente meno sproporzionato) e MgF2 risulta praticamente insolubile in acqua, anche se la sua struttura cristallina (tipo rutilo) è diversa e più coesa, con Mg in coordinazione ottaedrica.[11] Il BeF2 è anche leggermente solubile il alcool.[26]
BeF2 è un acido di Lewis e può catturare facilmente molecole neutre donatrici, come NH3 e H2O (vedi idratazione vista sopra), ma ancor meglio specie anioniche, come ad esempio ioni alogenuro: in presenza di ioni fluoruro, in particolare, forma diversi ioni complessi (fluoroberillati) con il berillio tri- o tetracoordinato, tipo BeF3–, BeF42–, Be2F5–, Be2F73–.[27]
Usi
Il fluoruro di berillio è un importante intermedio per ottenere berillio metallico. A tal scopo BeF2 viene ridotto con magnesio a circa 1300 ºC in un crogiolo di grafite:[28][8]
BeF2 + Mg → Be + MgF2
Tossicità / Indicazioni di sicurezza
Come tutti i composti di berillio, anche BeF2 è fortemente tossico. Il fluoruro di berillio è inoltre classificato come cancerogeno e pericoloso per l'ambiente acquatico.[1]
^(EN) Beatriz Cordero, Verónica Gómez e Ana E. Platero-Prats, Covalent radii revisited, in Dalton Transactions, n. 21, 14 maggio 2008, pp. 2832–2838, DOI:10.1039/B801115J. URL consultato il 14 luglio 2023.
^(DE) Arnold F. Holleman, Egon Wiberg e Nils Wiberg, Anorganische Chemie, 103ª ed., De Gruyter, 2017, p. 1433, ISBN978-3-11-026932-1.
^ A. F. Holleman, E. Wiberg e N. Wiberg, XVII. Die Gruppe der Erdalkalimetalle, in Anorganische Chemie, 103ª ed., De Gruyter, 2016, p. 1436, ISBN978-3-11-026932-1.
^(DE) Arnold F. Holleman, Egon Wiberg e Nils Wiberg, Anorganische Chemie, 103ª ed., De Gruyter, 2017, p. 1430, ISBN978-3-11-026932-1.
(EN) W. S. Rees Jr., Alkaline Earth Metals: Inorganic Chemistry, in Encyclopedia of Inorganic Chemistry, 2ª ed., John Wiley & Sons, 2006, DOI:10.1002/0470862106.ia005, ISBN9780470862100.