「アルス・マグナ」(羅: Ars Magna、「偉大なる技術」の意)は、イタリア人のジェロラモ・カルダーノが著した代数学の歴史的な書物。1545年に『Artis Magnæ, Sive de Regulis Algebraicis Liber Unus』(英: Book number one about The Great Art または The Rules of Algebra)として初版が出され、カルダーノの存命中の1570年に第2版が出されている。コペルニクスの『De revolutionibus orbium coelestium、「天球の回転について」』、ヴェサリウスの『De humani corporis fabrica、「人体の構造」』と並び、初期ルネッサンスにおける3大科学書として挙げられることがある。これらの書はいずれも1543年から1545年のわずか2年の間に相次いで出版されている。
3次方程式の解法では、シピオーネ・デル・フェッロが研究の端緒を開けたとされているが、彼は業績を公表せず、弟子の何人かに伝授して亡くなっていた。弟子の1人であったアントニオ・マリア・フィオル(Antonio Maria Fior )は、師の解法を使って数学競技で連勝し富と名声を得ていた。そこに、ニコロ・フォンタナ・タルタリアという人物が独自に 3 次方程式の解法をみつけたという話を聞きつけた。1535年、3 次方程式 x3 + ax = b (ただし a,b > 0) の数学競技でフィオルはタルタリアに勝負を挑んだもののフェッロの解法では勝てず、勝ったタルタリアは一躍有名になった。彼はおそらく独学でこの解法の発見していたが、彼も解法について公表しなかった。
1539年、ミラノの Piatti Foundation の数学の講義で、最初の数学本『Pratica Arithmeticæ et mensurandi singularis』(英: The Practice of Arithmetic and Simple Mensuration、「算術と単純求積の実践」)を出版したカルダーノは、タルタリアの話を聞きつけ、同年タルタリアに彼の 3 次方程式の解法を懇願した。何度も断った末にタルタリアはしぶしぶ了承したが、カルダーノにはタルタリア自身が公表するまでは外に出さないと約束させられた。カルダーノはその後の数年間は、タルタリアの解法を元に自身でその他の型の3次方程式の解法を拡張することに没頭した。その頃タルタリアの弟子であったルドヴィコ・フェラーリは 4 次方程式の解法も発見していたが、しかしフェラーリの方法もタルタリアの 3 次方程式の公式を補助的に使っていたため公表できないでいた。
その後、カルダーノとフェラーリは、たまたまボローニャにいたフェッロの養子のアンニバレ・デラ・ナーヴェ(Annibale della Nave)に会うことができた。そこで彼らはタルタリア以前に解法について書かれたフェッロの論文を見てしまう。カルダーノはこのことを根拠にタルタリアとの約束に縛られずに公表できると確信した。
^イギリスの数学者フランシス・マセレス(英: Francis Maseres、1731–1824)は自著「A dissertation on the use of the negative sign in algebra, 1758.」で、負数は存在しないと説いており、オイラーは負の数は無限大よりも大きいと信じていた。