^Saks, Michael; Zaharoglou, Fotios (2000), “Wait-free k-set agreement is impossible: The topology of public knowledge”, SIAM Journal on Computing29 (5): 1449–1483, doi:10.1137/S0097539796307698
^Razborov, Alexander A.; Rudich, Steven (1997), “Natural proofs”, Journal of Computer and System Sciences55 (1): 24–35, doi:10.1006/jcss.1997.1494, ISSN0022-0000
^Spielman, Daniel A.; Teng, Shang-Hua (2004), “Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time”, J. ACM51 (3): 385–463, arXiv:math/0212413, doi:10.1145/990308.990310, ISSN0004-5411
^Arora, Sanjeev (1998), “Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems”, Journal of the ACM45 (5): 753–782, doi:10.1145/290179.290180, ISSN0004-5411
^Mitchell, Joseph S. B. (1999), “Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems”, SIAM Journal on Computing28 (4): 1298–1309, doi:10.1137/S0097539796309764, ISSN1095-7111
^Roughgarden, Tim; Tardos, Éva (2002). “How bad is selfish routing?”. Journal of the ACM49 (2): 236–259. doi:10.1145/506147.506153.
^Nisan, Noam; Ronen, Amir (2001). “Algorithmic Mechanism Design”. Games and Economic Behavior35 (1–2): 166–196. doi:10.1006/game.1999.0790.
^Boneh, Dan; Franklin, Matthew (2003). “Identity-based encryption from the Weil pairing”. SIAM Journal on Computing32 (3): 586–615. doi:10.1137/S0097539701398521. MR2001745.
^Joux, Antoine (2004). “A one round protocol for tripartite Diffie-Hellman”. Journal of Cryptology17 (4): 263–276. doi:10.1007/s00145-004-0312-y. MR2090557.
^Fagin, Ronald; Lotem, Amnon; Naor, Moni (2003). “Optimal aggregation algorithms for middleware”. Journal of Computer and System Sciences66 (4): 614–656. arXiv:cs/0204046. doi:10.1016/S0022-0000(03)00026-6.
^Spielman, Daniel A.; Teng, Shang-Hua (2013). “A Local Clustering Algorithm for Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning”. SIAM Journal on Computing42 (1): 1–26. arXiv:0809.3232. doi:10.1137/080744888. ISSN0097-5397.
^Spielman, Daniel A.; Teng, Shang-Hua (2014). “Nearly Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems”. SIAM Journal on Matrix Analysis and Applications35 (3): 835–885. arXiv:cs/0607105. doi:10.1137/090771430. ISSN0895-4798.
^Dwork, Cynthia; McSherry, Frank; Nissim, Kobbi; Smith, Adam (2006). Halevi, Shai; Rabin, Tal (eds.). Calibrating Noise to Sensitivity in Private Data Analysis. Theory of Cryptography (TCC). Lecture Notes in Computer Science. Vol. 3876. Springer-Verlag. pp. 265–284. doi:10.1007/11681878_14. ISBN978-3-540-32731-8。
^Regev, Oded (2009). “On lattices, learning with errors, random linear codes, and cryptography”. Journal of the ACM56 (6): 1–40. doi:10.1145/1568318.1568324.
^“A constructive proof of the general Lovász Local Lemma”. Journal of the ACM57 (2). (2010). doi:10.1145/1667053. ISSN00045411.
^Bulatov, Andrei A. (2013). “The complexity of the counting constraint satisfaction problem”. Journal of the ACM (Association for Computing Machinery (ACM)) 60 (5): 1-41. doi:10.1145/2528400. ISSN0004-5411.
^Dyer, Martin; Richerby, David (2013). “An Effective Dichotomy for the Counting Constraint Satisfaction Problem”. SIAM Journal on Computing (Society for Industrial & Applied Mathematics (SIAM)) 42 (3): 1245-1274. arXiv:1003.3879. doi:10.1137/100811258. ISSN0097-5397.
^Cai, Jin-Yi; Chen, Xi (2017-06-22). “Complexity of Counting CSP with Complex Weights”. Journal of the ACM (Association for Computing Machinery (ACM)) 64 (3): 1-39. arXiv:1111.2384. doi:10.1145/2822891. ISSN0004-5411.