simple couple に対応する力のモーメントの大きさ N は2つの力のなす作用線の距離 d と一方の力の大きさ F の積 N = dF となる。モーメントの向きは偶力によって生じる回転軸と平行であり、2つの作用線を含む平面に垂直な向きとなる。一般的なベクトル積と同じく具体的なモーメントの向きは右手の法則に従い、作用線を含む平面を上から見た際に偶力が反時計回りに働く方を上向きに取る。
基準点の独立性
力のモーメントはある基準点 P に対して定義される。一般に基準点が異なればモーメントも異なるが、偶力のモーメントは基準点に依存せず、どの点に対しても同じモーメントを与える[1]。偶力のモーメントは基準点によらないため、一般の力のモーメントと異なり自由ベクトル(free vector)と見なせる。この事実はバリニョンの第2モーメント定理(Varignon's second moment theorem)として知られる[2]。
基準点 P まわりの力のモーメント は以下のように定義される:
ここで は基準点 P から作用点へ伸びる位置ベクトル、 は作用点に働く力である。
一方で基準点 Q に対する力のモーメントは、点 P から点 Q へ伸びるベクトルを a とすれば、 であり、
分配法則を使って
と書ける。右辺第一項は P まわりのモーメントに等しく、
が成り立つ。
点 Q まわりの2つの力のモーメントの和は、
となる。2つの力の和が 0 なら第2項は 0 となるため、点 Q のまわりの力のモーメントは点 P のまわりの力のモーメントの和と一致する。従って偶力のモーメントは基準点によらず定まる。
同様の方法で N 個の作用点に対する力のモーメントについても、合力が 0 なら(すなわち N 個の力の組が偶力をなすなら)モーメントは基準点によらないことが示せる。
力と偶力
質量中心から距離 d の剛体にかかる力 F は、質量中心に直接かかる同じ力と偶力 Cℓ = Fd と同じ効果を持つ[3]。この偶力は、剛体の角加速度を偶力の平面に対して直角に発生させる。質量中心にかかる力は、向きを変えずに力の方向に物体を加速させる[3]。
一見すると、力学ではなく、光学や電子工学がそれに関係しているように思われるかもしれない。実は、光学的挙動の変化などは、配向の変化と関連している。これらは偶力によって次々に生み出される。非常に大雑把に言えば、偶力を応用して、ワイヤーを曲げるのと同じようなものである。(At first glance, it may seem that it is optics or electronics which is involved, rather than mechanics. Actually, the changes in optical behavior, etc. are associated with changes in orientation. In turn, these are produced by couples. Very roughly, it is similar to bending a wire, by applying couples.)[4]