積率母関数確率論や統計学において、確率変数 X の積率母関数またはモーメント母関数(英: moment-generating function)は、期待値が存在するならば次の式で定義される。 積率母関数がそのように呼ばれるのは、t = 0 の周囲の開区間上でそれが存在する場合、それが確率分布のモーメントの母関数であるからである。 積率母関数がそのような区間について定義される場合、それにより確率分布が一意に決定される。 積率母関数で重要なことは、積分が収束しない場合、積率(モーメント)と積率母関数が存在しない可能性がある点である。これとは対照的に特性関数は常に存在するため、そちらを代わりに使うこともある。 より一般化すると、n-次元の確率変数ベクトル(ベクトル値確率変数) の場合、 の代わりに を使い、次のように定義する。 計算積率母関数はリーマン=スティルチェス積分で次のように与えられる。 ここで F は累積分布関数である。 X が連続な確率密度関数 f(X) を持つ場合、 は f(x) の両側ラプラス変換である。 ここで、 は i番目のモーメントである。 2つの独立確率変数の和2つの独立な確率変数の和の積率母関数は次のようになる。 独立確率変数の総和(一般化)X1, X2, ..., Xn が一連の独立確率変数で(分布が同一である必要は無い)、 としたとき(ai は定数)、Sn の確率密度関数はそれぞれの Xi の確率密度関数の畳み込みとなり、Sn の積率母関数は次のようになる。 他の関数との関係積率母関数に関連して、確率論にはいくつかの変換が存在する。
具体例
注
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve