^ abIwasaki, K., Kimura, H., Shimemura, S., & Yoshida, M. (2013). From Gauss to Painlevé: a modern theory of special functions. en:Springer Science & Business Media.
^Bobenko, A. I., Berlin, A. I. B. T., & Eitner, U. (2000). Painlevé equations in the differential geometry of surfaces. en:Springer Science & Business Media.
^The Nonlinear Schrödinger Equation -Singular Solutions and Optical Collapse- (2015), Gadi Fibich, Springer.
^Birnir, B. (1987). An example of blow-up, for the complex KdV equation and existence beyond the blow-up. SIAM Journal on Applied Mathematics, 47(4), 710-725.
^Zhang, Y., Lv, Y. N., Ye, L. Y., & Zhao, H. Q. (2007). The exact solutions to the complex KdV equation. Physics Letters A, 367(6), 465-472.
^An, H. L., & Chen, Y. (2008). Numerical complexiton solutions for the complex KdV equation by the homotopy perturbation method. Applied Mathematics and Computation, 203(1), 125-133.
^Yuan, J. M., & Wu, J. (2005). The complex KdV equation with or without dissipation. Discrete Contin. Dyn. Syst. Ser. B, 5, 489-512.
^Ma, L. Y., Shen, S. F., & Zhu, Z. N. (2016). Integrable nonlocal complex mKdV equation: soliton solution and gauge equivalence. arXiv preprint arXiv:1612.06723.
^Qi-Lao, Z., & Zhi-Bin, L. (2008). Darboux transformation and multi-solitons for complex mKdV equation. Chinese Physics Letters, 25(1), 8.
^Anco, S. C., Ngatat, N. T., & Willoughby, M. (2011). Interaction properties of complex modified Korteweg–de Vries (mKdV) solitons. Physica D: Nonlinear Phenomena, 240(17), 1378-1394.
^He, J., Wang, L., Li, L., Porsezian, K., & Erdélyi, R. (2014). Few-cycle optical rogue waves: complex modified Korteweg–de Vries equation. Physical Review E, 89(6), 062917.
^Kenyon, R., & Okounkov, A. (2007). Limit shapes and the complex Burgers equation. Acta Mathematica, 199(2), 263-302.
^Liu, T. P., & Zumbrun, K. (1995). Nonlinear stability of an undercompressive shock for complex Burgers equation. Communications in mathematical physics, 168(1), 163-186.
^Jia-Qi, M., & Xian-Feng, C. (2010). Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation. Chinese Physics B, 19(10), 100203.
^Neuberger, H. (2008). Complex Burgers' equation in 2D SU (N) YM. Physics Letters B, 670(3), 235-240.
^Senouf, D., Caflisch, R., & Ercolani, N. (1996). Pole dynamics and oscillations for the complex Burgers equation in the small-dispersion limit. Nonlinearity, 9(6), 1671.
^Shen, S., Feng, B. F., & Ohta, Y. (2016). From the real and complex coupled dispersionless equations to the real and complex short pulse equations. Studies in Applied Mathematics, 136(1), 64-88.
^Park, Q. H., & Shin, H. J. (1995). Duality in complex sine-Gordon theory. Physics Letters B, 359(1-2), 125-132.
^Aratyn, H., Ferreira, L. A., Gomes, J. F., & Zimerman, A. H. (2000). The complex sine-Gordon equation as a symmetry flow of the AKNS hierarchy. Journal of Physics A: Mathematical and General, 33(35), L331.
^Barashenkov, I. V., & Pelinovsky, D. E. (1998). Exact vortex solutions of the complex sine-Gordon theory on the plane. Physics Letters B, 436(1-2), 117-124.
^Park, Q. H., & Shin, H. J. (1999). Complex sine-Gordon equation in coherent optical pulse propagation. arXiv preprint solv-int/9904007.
^Sergyeyev, A., & Demskoi, D. (2007). Sasa-Satsuma (complex modified Korteweg–de Vries II) and the complex sine-Gordon II equation revisited: Recursion operators, nonlocal symmetries, and more. Journal of mathematical physics, 48(4), 042702.
^Getmanov, B. S. (1981). Integrable two-dimensional Lorentz-invariant nonlinear model of a complex scalar field (complex sine-Gordon II). Theoretical and Mathematical Physics, 48(1), 572-579.
^Aranson, I. S., & Kramer, L. (2002). The world of the complex Ginzburg-Landau equation. Reviews of Modern Physics, 74(1), 99.
^Akhmediev, N. N., Ankiewicz, A., & Soto-Crespo, J. M. (1997). Multisoliton solutions of the complex Ginzburg-Landau equation. Physical review letters, 79(21), 4047.
^Shraiman, B. I., Pumir, A., van Saarloos, W., Hohenberg, P. C., Chaté, H., & Holen, M. (1992). Spatiotemporal chaos in the one-dimensional complex Ginzburg-Landau equation. Physica D: Nonlinear Phenomena, 57(3-4), 241-248.
^Van Saarloos, W., & Hohenberg, P. C. (1990). Pulses and fronts in the complex Ginzburg-Landau equation near a subcritical bifurcation. Physical review letters, 64(7), 749.
^Chate, H. (1994). Spatiotemporal intermittency regimes of the one-dimensional complex Ginzburg-Landau equation. Nonlinearity, 7(1), 185.
^Doering, C. R., Gibbon, J. D., Holm, D. D., & Nicolaenko, B. (1988). Low-dimensional behaviour in the complex Ginzburg-Landau equation. Nonlinearity, 1(2), 279.
^Hakim, V., & Rappel, W. J. (1992). Dynamics of the globally coupled complex Ginzburg-Landau equation. Physical Review A, 46(12), R7347.
^Chaté, H., & Manneville, P. (1996). Phase diagram of the two-dimensional complex Ginzburg-Landau equation. Physica A: Statistical Mechanics and its Applications, 224(1-2), 348-368.
^Battogtokh, D., & Mikhailov, A. (1996). Controlling turbulence in the complex Ginzburg-Landau equation. Physica D: Nonlinear Phenomena, 90(1-2), 84-95.
^M. Hukuhara, Quelques remarques sur le mémoire de P. Painlevé: Sur les &eaute;quations différentielles dont l'intégrale générale est uniforme, Publ. Res. Inst. Math. Sci. Ser. A, 3 (1967), 139-150.
^M. Hukuhara, T. Kimura, T. Matuda, Equations différentielles ordinaires du premier ordre dans le champ complexe, Publ. Math. Soc. Japan, 7. The Mathematical Society of Japan, Tokyo 1961.
^福原満洲雄. (1982). 常微分方程式の 50 年, II. 数学, 34(3), 262-269.
^Takano, K., Reduction for Painlevé equations at the fixed singular points of the first kind, Funkcial. Ekvac., 29(1986), 99-119.
^Takano, K., Reduction for Painlevé equations at the fixed singular points of the second kind, J. Math. Soc. Japan, 42(1990), 423-443.
^Kimura, H.,Matumiya, A. and Takano, K., A normal form of Hamiltonian systems of several time variables with a regular singularity, J. Differential Equations, 127(1996), 337-364.
^Shioda, T. and Takano, K., On some Hamiltonian structures of Painlevé systems, I, Funkcial. Ekvac., 40(1997), 271-291.
^Matano, T., Matumiya, A. and Takano, K., On some Hamiltonian structures of Painlevé systems, II, J. Math. Soc. Japan, 51(1999), 843-866.
^Takano, K., Defining manifolds for Painlevé equations. "Toward the exact WKB analysis of differential equations, linear or non-linear" (Eds. C.J. Howls, T. Kawai, and Y. Takei), 261-269, Kyoto Univ. Press, Kyoto, 2000.
^Takano, K., Confluences of defining manifolds of Painlevé systems, Tohoku Math. J., 53(2001), 319-335.
^Noumi, M., Takano, K. and Yamada, Y., Bäcklund transformations and the manifolds of Painlevé systems, Funkcial. Ekvac., 45(2002), 237-258.
^Suzuki, M., Tahara, N. and Takano, K., Hierarchy of Bäcklund transformation groups of the Painlevé systems, J. Math. Soc. Japan, 56(2004), 1221-1232.
^Kimura, H. and Takano, K., On confluences of general hypergeometric systems, Tohoku Math. J., 58(2006), 1-31.
^Jimbo, M., Miwa, T., Môri, Y., & Sato, M. (1980). Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Physica D: Nonlinear Phenomena, 1(1), 80-158.
^Jimbo, M., Miwa, T., & Ueno, K. (1981). Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and -function. Physica D: Nonlinear Phenomena, 2(2), 306-352.
^Jimbo, M., & Miwa, T. (1981). Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II. Physica D: Nonlinear Phenomena, 2(3), 407-448.
^Jimbo, M., & Miwa, T. (1981). Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III. Physica D: Nonlinear Phenomena, 4(1), 26-46.
^ abFokas, A. S., Its, A. R., Novokshenov, V. Y., Kapaev, A. A., Kapaev, A. I., & Novokshenov, V. Y. (2006). Painlevé transcendents: the Riemann-Hilbert approach. American Mathematical Society.
^Its, A. R., & Novokshenov, V. Y. (2006). The isomonodromic deformation method in the theory of Painlevé equations. Springer.
^Fokas, A. S., & Ablowitz, M. J. (1981). Linearization of the Korteweg—de Vries and Painlevé II Equations. Physical Review Letters, 47(16), 1096.
^Fokas, A. S., & Ablowitz, M. J. (1982). On a unified approach to transformations and elementary solutions of Painlevé equations. Journal of Mathematical Physics, 23(11), 2033-2042.
^Fokas, A. S., Mugan, U., & Ablowitz, M. J. (1988). A method of linearization for Painlevé equations: Painlevé IV, V. Physica D: Nonlinear Phenomena, 30(3), 247-283.
^Fokas, A. S., & Ablowitz, M. J. (1983). On the initial value problem of the second Painlevé transcendent. Communications in mathematical physics, 91(3), 381-403.
^Etingof, Pavel I.; Frenkel, Igor; Kirillov, Alexander A. (1998), Lectures on Representation Theory and Knizhnik–Zamolodchikov Equations, Mathematical Surveys and Monographs, 58, American Mathematical Society, ISBN0821804960
^Trogdon, T., & Olver, S. (2015). Riemann-Hilbert problems, their numerical solution, and the computation of nonlinear special functions. SIAM.