辺推移グラフ数学のグラフ理論の分野における辺推移グラフ(へんすいいグラフ、英: edge-transitive graph)とは、与えられた任意の辺 e1 および e2 に対して、e1 を e2 へと写す自己同型が存在するようなグラフ G のことを言う[1]。 言い換えると、グラフが辺推移的であるとは、その自己同型群が各辺の上で推移的に作用することを言う。 例と性質完全2部グラフ や、対称グラフ(例えば立方体の頂点と辺から成るようなグラフ)は、どのようなものであっても辺推移グラフである[1]。対称グラフは(連結であれば)頂点推移的であるが、一般的に、辺推移グラフが頂点推移的であるとは限らない。グレイグラフはそのように辺推移的であるが頂点推移的でないグラフの例である。そのようなグラフは全て2部グラフであり[1]、したがって2色のみを使って彩色することが出来る。 正則であるが頂点推移的でないような辺推移グラフは、半対称グラフと呼ばれる。そのような例として、グレイグラフが再び挙げられる。すべての辺推移グラフは必ず2部グラフであり、また、半対称であるか双正則であるかのいずれかである[2]。 関連項目参考文献
外部リンク
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve