全世界のザトウクジラは、大きく北太平洋・北大西洋・南半球の3個体群に分かれており、各個体群はそれぞれ M. n. novaeangliae(北大西洋)M. n. kuzira(北太平洋)M. n. australis(南半球)のように亜種とされることもある[3]。北太平洋・北大西洋・南半球の各グループは大陸による隔離や回遊時期の違いなどにより互いに交流のないそれぞれ独立した個体群を維持していると考えられているが[7]、バブルネット・フィーディングは北太平洋[1][9]、北大西洋[10][11]、南半球[12][13]、各地域全ての高緯度海域と数カ所の低緯度海域で観察されている[† 1]。
バブルネット・フィーディングの基本的な流れとしては:
クジラが噴気孔から気泡を放出しながら海中を進む。
連続して浮上していく気泡は障壁(バブルネット)となって餌生物の進路を制限する。
逃げ道を塞がれて滞留した餌生物を海面近くに上昇してきたクジラが一飲みにする。
という過程を経る。バブルネットを構成する気泡はおよそ 2 cm 以上で様々な大きさのものが集まり、最大でマスクメロンの大きさになる[1][17]。ただし気泡を放出するやり方や気泡の障壁の形状など、細かい手法の差異が個体間だけでなく地域間にも存在し(例えば後述するバブル・クラウドはアラスカでは観察されない)[1][11][10]、学習によって伝達されると考えられている[18]。複数で行う場合には、低音から高音へ変化していく発声が観測される[1]。発声は約500 Hz 周辺の帯域で少しずつ上昇していき、一旦 400 Hz あたりに低下した後 800 Hz へ急上昇して終了する[9]。環状または螺旋状に餌生物を囲い込む場合のバブルネット直径は餌生物の種類など条件によっても変化し、3〜30 m ほどになる[19]。
1977年から1980年にかけてメイン湾(アメリカ北東大陸棚)におけるザトウクジラ採餌活動が航空機や海上船舶も使用して観察され、1982年に James H. W. Hain 等が報告した[10]。航空機からの直接観察や写真撮影により、海面上での気泡の配置やクジラの軌道なども詳細に記録され図示されている。この報告で Hain 等はザトウクジラの採餌行動にさらに新しいバリエーションを付け加えた[† 2]。そのうちの一つに「バブル・クラウド(雲形気泡[18])」があり、連続した気泡放出ではなく単発で大量に放出された気泡により形成された「雲」を作り出すものである。放出直後の気泡集合の直径は小さいが上昇と共に拡大し最終的には雲の直径は大きく 4〜7 m にもなる。雲を構成する個々の気泡径は推定 2 cm未満と小さく、その大きさは揃っている。これはバブルネットを形成する気泡(気泡径 2 cm以上・最大マスクメロン大までの様々な大きさ)とは対照的である。魚群の下から放出された雲が海面との間で魚群を集約しクジラがそれを捕食する事例が観察されている[10]。
Jurasz & Jurasz (1979) はアラスカ南東部で調査を行ったのでそれはザトウクジラの北太平洋個体群の報告であり、ノルウェー海で行われた Ingebrigtsen (1929) と北米東岸で行われた Hain et al. (1982) の観察は北大西洋個体群のものである。残る南半球個体群についても、南極海からの観察例が遅くとも1989年までに報告されている[12]。
海中の軌跡の項で既に述べた、バブルネットを形成する際の開始地点と終了地点の垂直距離が 20 m 未満であるという制限は Wiley 等がメイン湾で確認したものであるが、それに先立って別の研究者によりアラスカのザトウクジラにおいても同様の数値の制限が報告されている。そこで試験的に作成したバブルネットの水面への上昇を観察する水槽実験が行われた。その結果、気泡は大きさにより上昇速度が異なるため[† 4]、放出点からの上昇距離がおよそ 20 m を超えるとネットにかなり大きな空隙が生じることが明らかになった。交流がほとんどないと考えられている遠くはなれた2大洋の個体群それぞれが同じ最大値を持つことからも、この数値が物理学的特性による制限であることが示唆される[11]。
セミクジラのフィルターは 2.5 mm のプランクトン類でも捕らえることができるほど細かく[36]、ヒゲクジラ類の中ではもっとも小さいプランクトンを食べているが[37][38]、大型のナガスクジラ科が持つ短く粗いクジラヒゲではそのような小型プランクトン類は通り抜けてしまい、ナガスクジラ・シロナガスクジラ・ザトウクジラなどではより大きな魚類に対する魚食性の割合が比較的高くなる[4][2][39]。すなわちナガスクジラ類はセミクジラ類の餌生物に比べてもより敏捷で機敏に泳ぐ生物を餌としている[40]。そのような遊泳力の大きい餌生物に対する適応として、餌生物の群のまわりを退路を防ぐように回転中心方向に背を向けて旋回し、徐々に回転半径を小さくして群を押し集める行動はザトウクジラだけでなくシロナガスクジラやナガスクジラでも確認されている[41][42]。
同様の行動に加えて、ザトウクジラではさらに気泡放出を伴うバブルネット・フィーディング行動を獲得したが、この行動がどのように発達してきたかについてはまだよくわかっていない。協調行動としての観点から見ると、そのような協同戦略は近い血縁関係が維持される状況で最も起こりやすい[43]。しかし、組織標本を採取してザトウクジラの小群内の血縁関係を調査してみたところ、季節を変えても雌雄間にも、乳児と母親の関係以外に明確な関係性パターンは見られなかった[44]。また、ザトウクジラの他の社会システム(乱婚性・一産一子・広範囲な若年個体の分散)ではそのような関係性と戦略が維持されるとは予想されにくいと考えられている。よって Sachs et al. (2004) が協力を維持・進化させるモデルとして挙げた3つの内、血縁関係によるもの以外の2つ、見返りを与える個体への互恵、利己的な行動に偶発的に付随する協力、のどちらかに相当する可能性がある[11][45]。個体間の協力行動を議論する際にしばしば「ズルをする(協力に伴うコストを支払わずに利益だけ享受する)」個体の存在が言及されるが[27]、バブルネット・フィーディングにおいても気泡の放出や囲い込みを想起させる軌跡を一切示さずに最終的な集団による突進採餌にだけ参加した個体の行動記録が紹介されている[11]。協調を発達させる選択圧となり得る要因としてアップワード・スパイラルを行う際により多数の個体が参加する方が参加する各個体のコスト(この場合必要とされるエネルギーと全体の動きの中で必要とされる複雑さ)が減少することが判明している[27]。
^
ロブテイル行動が初めて観察される直前の時期にはその地域でニシン(これも餌生物として重要である)の資源量に壊滅的な打撃があり、その穴を埋めるように American sand lance(イカナゴ属魚類)の生物量が増大した。ロブテイル行動の登場は American sand lance の資源量の最大ピークに、ロブテイル行動の急速な普及は American sand lance の資源量の第2ピークにそれぞれ時期的に対応しており、ロブテイル行動は大量に利用可能となった餌資源を開発する新たな適応として出現した行動である可能性が指摘されている[47]。
出典
^ abcdefghijklmnCharles M. Jurasz & Virginia P. Jurasz (1979). “Feeding modes of the humpback whale, Megaptera novaeangliae, in southeast Alaska”. Scientific Reports of the Whales Research Institute31: 69–83.
^ abcdefghijklAkito Kawamura (1980). “A review of food of balaenopterid whales”. Scientific Reports of the Whales Research Institute32: 155–197. CRID1570854174256336896.
^ abcCynthia G. D'Vincent, Russell M. Nilson, Richard E. Hanna (1985). “Vocalization and coordinated feeding behavior of the humpback whale in southeastern Alaska”. Scientific Reports of the Whales Research Institute36: 41-47. CRID1573950400994061312.
^ abcdefghijklmHain, J.H.W., Carter, G.R., Kraus, S.D., Mayo, C.A., and Winn, H.E. (1982). “Feeding behavior of the humpback whale Megaptera novaeangliae in the western North Atlantic”. Fishery Bulletin80: 259-268. CRID1573105976074322048.
^ abcdefghijklDavid Wiley, Colin Ware, Alessandro Bocconcelli, Danielle Cholewiak, Ari Friedlaender, Michael Thompson & Mason Weinrich (2011). “Underwater components of humpback whale bubble-net feeding behaviour”. Behaviour148 (5/6): 575-602. doi:10.1163/000579511X570893.
^ abcHelena Herr, Sacha Viquerat, Volker Siegel, Karl-Hermann Kock, Boris Dorschel, Wilma G. C. Huneke, Astrid Bracher, Michael Schröder, Julian Gutt (2016). “Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: evidence from a concurrent whale and krill survey”. Polar Biology39: 799–818. doi:10.1007/s00300-016-1927-9.
^Eleanor M. Marwood, Ciarán J. Dolan, Tom J. Dolan, and Kevin P. Robinson (2022). “Account of a Solitary Humpback Whale (Megaptera novaeangliae) Bubble-Net Feeding in the Moray Firth, Northeast Scotland”. Aquatic Mammals48 (6): 553-558. doi:10.1578/AM.48.6.2022.553.
^Vanessa Pirotta, Kylie Owen, David Donnelly, Madeleine J. Brasier, & Robert Harcourt (2021). “First evidence of bubble-net feeding and the formation of ‘super-groups’ by the east Australian population of humpback whales during their southward migration”. Aquatic Conservation: Marine and Freshwater Ecosystems31 (9): 2412-2419. doi:10.1002/aqc.3621.
^ abcdefghF. A. Sharpe and L.M. Dill (1997). “The behavior of Pacific herring schools in response to artificial humpback whale bubbles”. Canadian Journal of Zoology75 (5): 725-730. doi:10.1139/z97-093.
^Pomilla, C., Amaral, A. R., Collins, T., Minton, G., Findlay, K., et al. (2014). “The World’s Most Isolated and Distinct Whale Population? Humpback Whales of the Arabian”. PLoS ONE9 (12): e114162. doi:10.1371/journal.pone.0114162.
^ abcNatalie C. Mastick, David Wiley, David E. Cade, Colin Ware, Susan E. Parks, Ari S. Friedlaender (2022). “The effect of group size on individual behavior of bubble-net feeding humpback whales in the southern Gulf of Maine”. Marine Mammal Science38 (3): 959-974. doi:10.1111/mms.12905.
^ abFrank E. Fish, Laurens E. Howle and Mark M. Murray (2008). “Hydrodynamic flow control in marine mammals”. Integrative and Comparative Biology48 (6): 788–800. doi:10.1093/icb/icn029.
^Spencer H. Bryngelson, Tim Colonius (2020). “Simulation of humpback whale bubble-net feeding models”. Journal of the Acoustical Society of America147: 1126-1135. doi:10.1121/10.0000746.
^ abAkito Kawamura (1974). “Food and feeding ecology in the southern sei whale”. Scientific Reports of the Whales Research Institute26: 25-144. CRID1571698599186474752.
^Takahisa Nemoto (1959). “Food of baleen whales with reference to whale movement”. Scientific Reports of the Whales Research Institute14: 149–291. CRID1571135650778617216.
^Hamilton, W.D. (1964). “The genetical evolution of social behaviour”. J. Theor. Biol.7: 1-52.
^Elena Valsecchi, Peter Hale, Peter Corkeron and William Amos (2002). “Social structure in migrating humpback whales (Megaptera novaeangliae)”. Molecular Ecology11 (3): 507–518. doi:10.1046/j.0962-1083.2001.01459.x.
^Joel L. Sachs, Ulrich G. Mueller, Thomas P. Wilcox, James J. Bull (2004). “The Evolution of Cooperation”. The Quarterly Review of Biology79 (2): 135-160. doi:10.1086/383541.