BorūdeņražiBorūdeņraži jeb borāni ir bora un ūdeņraža binārie savienojumi. Tie ir gāzveida, šķidras vai cietas vielas ar ļoti nepatīkamu smaku. Borūdeņražiem raksturīga liela ķīmiskā aktivitāte un sadegšanas siltums, tādēļ tie izraisa interesi kā raķešdegviela. Ir pazīstami borūdeņraži, kuru molekulās ir 2 līdz 20 bora atomi. Visvienkāršākais borūdeņradis BH3 ir tik reaģētspējīgs, ka tūlīt dimerizējas un brīvā veidā nav iegūstams, tomēr ir pazīstami kompleksie savienojumi, kuros BH3 ietilpst kā ligands. Vienkāršākajiem borūdeņražiem ir sastāvs BnHn+4 un BnHn+6. Darbu ar borūdeņražiem jāveic īpašos traukos, lai izslēgtu skābekļa un ūdens tvaiku piekļuvi. Molekulas uzbūve
Borūdeņraži ir savienojumi ar izteiktu elektronu deficītu un to molekulās ir ne tikai parastās divelektronu kovalentās saites, bet arī daudz retāk sastopamās trīscentru un vairākcentru saites, tādējādi borāniem ir visai īpatnēja un sarežģīta struktūra. Piemēram, diborāna B2H6 molekulā ir četras parastās divelektronu B—H saites un divas trīscentru B---H---B saites, kurās uz 3 atomiem ir 2 kopēji valences elektroni. Abi bora atomi šeit ir sp3 hibridizācijas stāvoklī (veido tetraedrisku konfigurāciju) un ir savienoti ar diviem ūdeņraža "tiltiņiem". Sarežģītāko borānu, kā tetraborāna, molekulās var būt arī B—B saites. Pentaborāna molekulā ir pieccentru saite, kur piecu bora atomu "skeletam" ir kopīgi 6 elektroni.[1] Dodekaborāna anjonā divpadsmit bora atomi izvietoti ikosaedra veidā. IegūšanaTā kā borāni ir termodinamiski nestabilas vielas un bors ar ūdeņradi tieši nereaģē,[2] tos iegūst ar netiešām metodēm. Viena no svarīgākajām metodēm ir magnija metode jeb Stoka (Stock A., 1912) paņēmiens. Vispirms iegūst magnija borīdu, ko pēc tam apstrādā ar sālsskābi.
Izdalījušos borūdeņražu maisījumu, kura galvenais komponents ir tetraborāns, pārdestilē vakuumā, attīra un uzkrāj atsevišķos borūdeņražus tiem piemērotos apstākļos. Borānus var iegūt arī pēc Šlēzingera un Burga ieteiktās metodes bora trihlorīda vai bora tribromīda reakcijā ar ūdeņradi, iedarbojoties uz šo vielu maisījumu ar augstsprieguma elektrisko loku. Radušos hidrohlorborānu atdzesē līdz istabas temperatūrai, kurā tas disproporcionējas par diborānu un bora trihlorīdu. Diborānu atdala no maisījuma ar iznākumu līdz 55%. Ir ieteikts arī efektīvāks paņēmiens, izmantojot apmaiņas reakciju starp nātrija borhidrīdu un bora trifluorīdu. Citus borānus parasti iegūst, pakļaujot tetraborānu termiskajam krekingam.[3] Praktiski tīrs diborāns rodas, karsējot tetraborānu vairākas stundas 100 °С temperatūrā. Spēcīgi karsējot diborānu, tas sašķeļas BH3 brīvajos radikāļos, kas pievienojas diborāna molekulām, veidojot sarežģītākus borānus. Īpašības
Diborāns reaģē ar metālu alkilsavienojumiem, veidojot ļoti svarīgus savienojumus — metālu borhidrīdus jeb boronātus. IzmantošanaNo daudzajiem borūdeņražiem visērtāks izmantošanai par raķešdegvielu ir pentaborāns, tomēr savas lielās bīstamības dēļ tas plaši netika pielietots. Savdabīgās zaļās liesmas dēļ šo degvielu neformāli dēvēja par "zaļo pūķi" (Green Dragon), bet tās iznīcināšanas tehnoloģiju (hidrolizējot ar ūdens tvaiku) — par "pūķa slepkavu" (Dragon Slayer). Kā raķešdegvielas tika izmantoti arī tā atvasinājumi propilpentaborāns un etilpentaborāns.[4] Fantastiskajā romānā "Neuzvaramais" Staņislavs Lems apraksta kosmosa kuģa nosēšanos ar borūdeņražu dzinēju[5]:
Organiskajā sintēzē izmanto borānu pievienošanās reakcijas pie alkēnu dubultsaitēm. Iegūtos produktus iesaista tālākās reakcijās. Atsauces
|