Diagonalizacja – sprowadzenie macierzy kwadratowej do postaci diagonalnej[1], a konkretniej rozkład macierzy na iloczyn macierzy
gdzie jest macierzą diagonalną.
Macierz jest nazywana macierzą przejścia.
Współczynniki na głównej przekątnej macierzy diagonalnej są równe kolejnym wartościom własnym macierzy z kolei kolumny macierzy stanowią kolejne wektory własne macierzy
Macierze kwadratowe, które można przedstawić w postaci diagonalnej, nazywamy diagonalizowalnymi.
Rozkład Jordana i rozkład wartości osobliwych to dwa różne uogólnienia diagonalizacji, działające dla dowolnych macierzy.
Zastosowanie
Diagonalizacja ułatwia potęgowanie macierzy:
gdzie:
- gdzie jest macierzą jednostkową stopnia
- są wartościami własnymi macierzy
- jest macierzą diagonalną o współczynnikach będących potęgami kolejnych wartości własnych.
Własności
Macierze symetryczne i hermitowskie są diagonalizowalne. Ogólniej, macierze normalne są diagonalizowalne unitarnie – tzn. istnieje dla nich unitarna macierz przejścia dla rozkładu diagonalnego.
W szczególności:
Jeśli dla pewnej macierzy mamy rozkład diagonalny
wówczas:
Diagonalizacja Jacobiego
Załóżmy, że jest przestrzenią ortogonalną oraz jest bazą taką, że dla każdego zachodzi (wyznacznik Grama). Wtedy istnieje baza prostopadła
przestrzeni w której ma macierz:
- gdzie dla
Zobacz też
Przypisy
Niektóre typy macierzy | Cechy niezależne od bazy |
|
---|
Cechy zależne od bazy |
|
---|
|
---|
Operacje na macierzach | jednoargumentowe |
|
---|
dwuargumentowe |
|
---|
|
---|
Niezmienniki | |
---|
Inne pojęcia |
|
---|