Działo elektronoweDziało elektronowe – element urządzeń wytwarzający odpowiednio skierowany strumień elektronów o odpowiedniej energii. Działo elektronowe jest elementem kineskopów, mikroskopów elektronowych, źródłem elektronów w akceleratorach cząstek[1]. Ogólne informacjeDziało elektronowe składa się z następujących elementów:
Istnieją dwa główne typy dział elektronowych wykorzystujących zjawisko termoemisji lub emisję polową. Najprostsze działo elektronowe to wolframowe włókno (katoda). Jest ono nagrzewane w próżni do temperatury około 2800 K. Elektrony uzyskują energię, która pozwala, aby opuściły katodę. Emitowane elektrony są kolimowane i ogniskowane przy pomocy cylindra Wehnelta (pole elektrostatyczne). Wiązka pierwotna ma wtedy średnicę około 50 μm. Potencjał przyłożony do anody wynosi od 1 do 20 kV. Przyspieszenie elektronów następuje w wyniku dużej różnicy potencjałów pomiędzy katodą a anodą[2] (rys. 1). Głównym parametrem charakteryzującym działo elektronowe jest jasność źródła wiązki Definiuje się ją jako gęstość prądu odniesioną do jednostkowego kąta bryłowego: gdzie:
Zwiększona jasność β pozwala wykorzystać większy prąd I, dzięki czemu uzyskuje się lepszą rozdzielczość. W przypadku wykorzystania katody LaB6 uzyskuje się lepszą jasność związaną z niższą pracą wyjścia elektronów oraz mniejszym rozmiarem źródła (ok. 10 μm). Działa FEG charakteryzują się najmniejszym rozmiarem źródła (maks. 30 nm). Zarówno katoda heksaborku lantanu i działa z emisją polową dodatkowo wyróżniają się dłuższym czasem eksploatacji, niż standardowe włókna wolframowe. Emitują elektrony o mniejszym odchyleniu energetycznym, co umożliwia poprawę rozdzielczości poprzez zmniejszanie wpływu aberracji chromatycznej[4]. Napięcie przyspieszające jest to napięcie przyłożone pomiędzy katodą a anodą. Można rozpatrzyć dwa przypadki dla przyspieszającego elektronu. Gdy jego prędkość jest mała (dużo niższa od prędkości światła w próżni) można wyznaczyć długość fali w zależności od zastosowanego napięcia przyspieszającego: gdzie:
Gdy napięcie przyspieszające jest większe od 6 kV elektrony osiągają tak dużą prędkość, że należy uwzględnić efekty relatywistyczne. Masa elektronu wzrasta ze zwiększaniem się prędkości. Długość fali można wyznaczyć z relacji: gdzie:
W skaningowej mikroskopii elektronowej stosuje się najczęściej napięcie przyspieszające z zakresu 10–20 kV, a transmisyjna mikroskopia elektronowa wykorzystuje napięcia 100–400 kV. Stosowanie większych napięć przyspieszających pozwala otrzymywać informację z większych głębokości próbki. Dodatkowo można uzyskać widmo charakterystycznego promieniowania rentgenowskiego cięższych pierwiastków, których energia wzbudzenia jest duża. Niskie napięcie przyspieszające ułatwia detekcję lekkich pierwiastków o niskiej zawartości w próbce. Przy wzroście wielkości napięcia przyspieszającego ponad 400–500 kV nie pojawia się znaczące skrócenie długości fali, niż by to wynikało ze strat energetycznych i opłacalności danych obserwacji. Duże wartości napięcia przyspieszającego powodują mocniejszą eksploatację katody, silnie skracając jej żywotność[5]. Przypisy
|