Share to: share facebook share twitter share wa share telegram print page

 

Macierze gamma

Macierze γ, macierze Diraca – zbiór czterech macierzy zespolonych stosowanych w relatywistycznej mechanice kwantowej.

Macierze gamma

Macierze są zdefiniowane za pomocą 16 równań

gdzie:

=
– element tensora metrycznego czasoprzestrzeni (przy czym np. )
macierz jednostkowa 4 × 4
antykomutator A i B[1].

Powyższe warunki można zapisać w równoważnej formie:

gdzie:

Warunki określające macierze gamma wyprowadza się żądając m.in., by równanie Diraca spełniało jednocześnie równanie Kleina-Gordona. Warunki te nie definiują konkretnej postaci macierzy – każda reprezentacja spełniająca je jest dobra.

Powyższe macierze zapisane są z górnymi wskaźnikami. Nazywa się je kontrawariantnymi macierzami gamma.

Macierze

Kowariantne macierze gamma są zdefiniowane następująco:

gdzie

i sumacyjna reguła Einsteina jest tu założona.

Reprezentacje macierzy gamma

Najpopularniejszymi reprezentacjami są:

Reprezentacja Pauliego-Diraca

Zaproponowana przez Wolfganga Pauliego i Paula Diraca – macierze γ wyrażają się tu przez macierze Pauliego:

gdzie oznacza tu macierz jednostkową 2 × 2[2]. Uwzględniając postacie macierzy Pauliego otrzymamy:

Macierz jest zawsze macierzą hermitowską. Macierze w tej reprezentacji są macierzami antyhermitowskimi, lecz nie jest tak w każdej reprezentacji.

Reprezentacja Weyla (chiralna)

Stosowana często w kwantowej teorii pola ze względu na wygodną postać operatorów rzutu na składowe spinora w tej reprezentacji[3]:

Macierz γ5

Macierz γ5 jest zdefiniowana jako

gdzie oznacza jednostkę urojoną; macierz ta ma różną postać w zależności od reprezentacji. Np.

w reprezentacji Diraca.

Właściwości:

  • jest to macierz hermitowska, tj.
  • jej wartości własne są równe gdyż
  • antykomutuje z czterema macierzami gamma, tj.

Pomimo że używa się tu symbolu gamma, macierz ta nie należy do algebry Clifforda C1,3(R) – zaś macierze należą do tej algebry. Ponadto liczba 5 użyta w jej oznaczeniu jest pozostałością starszej notacji, w której macierz oznaczano jako

Macierze alfa, beta Diraca

Równanie Diraca można przekształcić do postaci analogicznej do równania Schrödingera, wprowadzając macierze

Zachodzi też analogiczna odwrotna zależność:

W reprezentacji Diraca macierze te mają postać

Macierze alfa, beta Diraca są macierzami hermitowskimi.

Zobacz też

Przypisy

  1. David Grifiths: Introduction to Elementary Particles. New York: John Wiley & sons, Inc., 1987, s. 215–216. ISBN 0-471-60386-4.
  2. James D. Bjorken, Sidney D. Drell: Relativistic Quantum Mechanics. New York: McGraw-Hill, 1964, s. 282. OCLC 534560.
  3. Michael E. Peskin, Daniel V. Schroeder: An introduction to Quantum Field Theory. Reading, Mass.: Addison-Wesley, 1995, s. 41. ISBN 978-0-201-50397-5.

Linki zewnętrzne

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya