Pochodził z Alopekonnesos na Chersonezie Trackim (dzisiejsze Dardanele) lub z Prokonnesos na Propontydzie[a][3] (Morze Marmara). Miał brata Dinostratosa. Obaj według komentarza Proklosa do Księgi I ElementówEuklidesaznacznie udoskonalili geometrię[4][5]. Menaichmos pobierał nauki w szkole Eudoksosa w Kyzikos, którą później również prowadził[6]. Według Stobajosa na prośbę Aleksandra Wielkiego aby szybko i treściwie nauczył go geometrii odpowiedział: O królu! Przez kraj wiodą drogi zwykłe i królewskie. W geometrii jest jedna droga dla wszystkich[3][7]. Nie jest to niemożliwe, jako że mógł być nauczycielem Aleksandra z polecenia Arystotelesa[6].
Prace
Obok Hipokratesa, Archytasa i Eudoksosa był jednym z tych, którzy według Eutokiosa podjęli próbę rozwiązania problemu podwojenia sześcianu[8].
Dzięki temu dokonał swojego najbardziej znaczącego wkładu w naukę, tzn. odkrycia krzywych stożkowych. Już Hipokrates doszedł do wniosku, że rozwiązanie problemu delijskiego sprowadza się do znalezienia tzw. dwóch średnich proporcjonalnych[9].
Przy założeniu, że mamy dwie wartości, i i chcemy znaleźć dwie średnie proporcjonalne pomiędzy nimi i to
Plutarch opisuje niezadowolenie Platona, ze sprowadzenia rozwiązania problemu delijskiego do, jak uważał, operacji czysto mechanicznej[10].
Z przekazu Teona ze Smyrny[11] wiadomo również, że rozwinął teorię koncentrycznych sfer Eudoksosa. Według Proklosa próbował na nowo zdefiniować pojęcie elementu[12] oraz zastanawiał się nad różnicą pomiędzy twierdzeniem a problemem[4]. Według bizantyjskiej Księgi Suda napisał traktat filozoficzny w trzech księgach o Państwie Platona[2].