Miara kątaMiara kąta – wielkość kąta wyrażona w odpowiednich jednostkach. W matematyce i jej zastosowaniach teoretycznych używa się miary łukowej. Jest to długość łuku wyciętego przez kąt z okręgu o promieniu 1 i środku w wierzchołku kąta. Tak określona miara wyraża się liczbą niemianowaną (bezwymiarową) i może przyjmować wartości z zakresu 0 do 2π. Jednostkę miary łukowej nazywamy radianem. W życiu codziennym używa się zwykle miary stopniowej. Kąt pełny dzieli się na 360 stopni kątowych (symbol: °), każdy z nich na 60 minut kątowych (symbol: ′), a każdą z nich na 60 sekund kątowych (symbol: ″). Ułamki sekund kątowych podawane są już dziesiętnie. Tę właśnie miarę wykorzystuje się w popularnych kątomierzach. W praktyce militarnej i geodezyjnej stosowany bywa podział kąta pełnego na 400 gradów (lub gradusów, symbol: g), z których każdy dzieli się na 100 centygradów (symbol: c), a każdy z nich na 100 myriogradów (symbol: cc). Podział taki ułatwia ręczne (pisemne) dodawanie i odejmowanie, ponieważ przeniesienia i pożyczki wykonuje się jak przy zwykłych liczbach dziesiętnych, bez konieczności przeliczania na 60 i 90 jednostek. W pomiarach nachylenia nawierzchni używa się miary procentowej (np. przy określeniu nachylenia nawierzchni drogi). Przykładowo 1% oznacza zmianę wysokości o 1 cm na 100 cm długości. Oblicza się to według wzoru:
Miara kąta potocznie nazywana jest kątem.
Używa się również (gł. w artylerii) jednostki zwanej tysiączną. Definiuje się ją jako miarę kąta środkowego, który z okręgu o promieniu 1 km wycina łuk o długości 1 m. Tysięczna rzeczywista jest więc równa 1/1000 radiana, w przybliżeniu 1/6283,2 kąta pełnego. Spotyka się też definicje:
zatem na kilometrowym okręgu:
Dla porównania:
Porównanie miarArgumenty funkcji trygonometrycznych dla liczb rzeczywistych można zinterpretować jako miarę kąta. Matematycy używają jednak praktycznie wyłącznie radianów. Miara stopniowa jest dość popularna, jednak w stosunku do radianów powoduje pewne komplikacje przy obliczeniach trygonometrycznych: Dla kątów bliskich zeru długość łuku okręgu jednostkowego (czyli kąt wyrażony w radianach) jest w przybliżeniu równa wartości funkcji sinus, stąd pochodna funkcji sinus dla wynosi 1. 1 jest też wartością funkcji cosinus dla Okazuje się, że ogólnie: Tak jest jednak tylko dla kątów wyrażonych w radianach (miara łukowa). Oznaczmy na potrzeby tej sekcji funkcje sinus i cosinus dla stopni przez oraz Teraz: We wzorach pojawiły się dodatkowe współczynniki. Takie współczynniki są różne od 1 przy każdej mierze kąta oprócz miary łukowej (radianów). Podobne utrudnienia powstałyby także w rozwinięciach funkcji trygonometrycznych w postaci szeregów (omówione są tutaj) i w wielu innych miejscach w analizie matematycznej. Ponadto miara łukowa ma prostą interpretację geometryczną: jest to długość części okręgu jednostkowego o środku w wierzchołku kąta zawartej w danym kącie. Miara łukowa jest więc w pewnym sensie wyróżniona wśród wszelkich możliwych miar kątów i najbardziej naturalna, dlatego powszechnie stosuje się ją w matematyce i do niej dostosowane są definicje funkcji trygonometrycznych. Zobacz też |