Share to: share facebook share twitter share wa share telegram print page

 

Obrót

Obrót względem środka układu współrzędnych.

Obrótizometria parzysta płaszczyzny lub przestrzeni, mająca przynajmniej jeden punkt stały[1].

Obrót na płaszczyźnie

Obrót dokoła punktu o kąt skierowany jest to odwzorowanie geometryczne płaszczyzny na siebie, takie że:

  1. jeśli to
  2. jeśli to gdzie oraz kąty skierowane są przystające.

Punkt nazywa się środkiem obrotu, a kąt kątem obrotu

Jeżeli jest kątem zerowym lub kątem pełnym, to niezależnie od punktu obrót jest odwzorowaniem tożsamościowym, które nazywane jest obrotem zerowym.

Obrót płaszczyzny o kąt skierowany półpełny jest symetrią środkową.

Każdy obrót płaszczyzny można przedstawić jako złożenie dwóch symetrii osiowych płaszczyzny o osiach przechodzących przez środek obrotu i tworzących kąt o mierze równej połowie miary kąta obrotu.

Prawdziwe jest także twierdzenie odwrotne: złożenie dwóch symetrii osiowych o osiach i przecinających się w punkcie jest obrotem dookoła punktu o kąt skierowany dwukrotnie większy od kąta utworzonego przez proste i

Obrót niezerowy jest izometrią parzystą płaszczyzny, mającą dokładnie jeden punkt stały.

Okręgi i koła o środku w punkcie są figurami stałymi obrotu

Obrót wokół początku układu współrzędnych na płaszczyźnie o kąt punktu można opisać wzorem analitycznym gdzie[2]:

Obrót na płaszczyźnie zespolonej punktu wokół początku układu współrzędnych o kąt można wyrazić wzorem

Obrót w przestrzeni

Obrót dokoła prostej w przestrzeni określa się jako obrót dokoła osi o kąt skierowany w którym prosta zwana osią obrotu jest zbiorem punktów stałych przekształcenia, a każdemu punktowi jest przyporządkowany punkt taki, że punkty i leżą w płaszczyźnie prostopadłej do prostej a punkt jest obrazem punktu w obrocie o kąt skierowany dokoła punktu (punkt jest punktem przecięcia płaszczyzny przez prostą )[3].
Obrót wokół osi w przestrzeni o kąt punktu można opisać wzorem analitycznym gdzie[4]:

Obrót przestrzeni jest złożeniem dwóch symetrii płaszczyznowych względem płaszczyzn przecinających się wzdłuż osi obrotu i tworzących kąt dwuścienny dwukrotnie mniejszy od kąta obrotu, dodatkowo, gdy płaszczyzny są prostopadłe jest także symetrią osiową. Obrót niezerowy dokoła prostej jest izometrią parzystą przestrzeni, mającą dokładnie jedną prostą punktów stałych.

Przykładowo, figurami stałymi obrotu są sfery i kule, których środki leżą na osi obrotu.

Zobacz też

Przypisy

  1. Encyklopedia Szkolna Matematyka. Wyd. 1. Warszawa: Wydawnictwa Szkolne i Pedagogiczne, 1988, s. 166.
  2. obrót, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2021-10-13].
  3. Słownik Encyklopedyczny Matematyka. Wyd. 1. Wrocław: Wydawnictwo Europa, 1988, s. 180.
  4. P.S. Modienow, A.S. Parchomienko: Przekształcenia geometryczne. 1967, s. 70.

Linki zewnętrzne

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya