Pochodna funkcji w punkcie albo różniczka funkcji w punkcie to przekształcenie liniowe będące najlepszym liniowym przybliżeniem przyrostu funkcji w punkcie
W matematyce i naukach ją wykorzystujących szczególnie ważne są funkcje postaci ponieważ można zdefiniować ich ekstremum. Pochodne takich funkcji służą do szukania ich ekstremum.
Definicja
Niech będzie zbiorem otwartym. Powiemy, że funkcja jest różniczkowalna w punkcie jeżeli istnieje przekształcenie liniowe takie, że
- [1]
Przekształcenie liniowe nazywamy pochodną funkcji w punkcie albo różniczką funkcji w punkcie i oznaczamy lub podobnie.
Równoważnie funkcja jest różniczkowalna w punkcie jeżeli jej przyrost w tym punkcie można przedstawić w postaci:
gdzie reszta ma własność
Stąd wynika, że różniczka to najlepsze możliwe liniowe przybliżenie przyrostu funkcji.
Terminologia i notacja
W przypadku funkcji tradycyjnie rozróżnia się pochodną funkcji i różniczkę funkcji. W przypadku funkcji literatura matematyczna z reguły nie rozróżnia tych terminów i stosuje je wymiennie. Przykładowo Michael Spivak w Analizie na rozmaitościach przekształcenie liniowe z powyższej definicji oznacza i nazywa pochodną (ang. derivative) funkcji w punkcie , podczas gdy Wojciech Wojtyński w Grupach i Algebrach Liego oznacza je i nazywa różniczką funkcji w punkcie . Wojciech Wojtyński pochodną funkcji różniczkowalnej nazywa funkcję z w przestrzeń przekształceń liniowych z w daną wzorem
Pochodna zupełna to termin, który pojawia się w literaturze fizycznej oznaczający tam pochodną złożenia , postaci
i podobnych złożeń. Pochodna tego złożenia jest równa
W notacji fizycznej powyższy wzór jest zapisywany
lub podobnie.
Pochodna jako funkcja
Niech będzie zbiorem otwartym. Powiemy, że funkcja jest różniczkowalna, jeżeli jest różniczkowalna w każdym punkcie Funkcja różniczkowalna indukuje odwzorowanie z w przestrzeń przekształceń liniowych z w dane wzorem
które nazywamy pochodną funkcji albo różniczką funkcji
Własności
- Różniczka jest operatorem liniowym:
- o ile złożenia mają sens.
- Jeżeli jest różniczkowalne w punkcie to
- gdzie po prawej stronie stoi pochodna kierunkowa.
Macierz pochodnej
Różniczka jest (z definicji) przekształceniem liniowym, a zatem jest sens rozważać jej macierz. Jeżeli gdzie to złożenia rzutowań z funkcją to macierz różniczki jest postaci
Jeżeli jest różniczkowalna w punkcie to macierz jej różniczki w bazie standardowej jest postaci
Jeżeli jest różniczkowalne w punkcie to macierz jej różniczki w bazach standardowych i jest postaci
Reguła łańcuchowa przenosi się na macierz różniczki:
Przykłady
(1) Rozważmy funkcję daną wzorem
Jej różniczka ma w bazach standardowych macierz
i jest dana wzorem
(2) Jeżeli funkcja jest różniczkowalna w punkcie to jej różniczka w tym punkcie jest dana wzorem
(3) Przykładowo różniczka funkcji danej wzorem
jest dana wzorem
i w punkcie na wektorze wynosi
(4) Niech oznaczają rzutowania na -tą współrzędną względem bazy standardowej tzn.
Rzutowania są funkcjami różniczkowalnymi i ich różniczki są dane wzorem
dla każdego
(5) Łącząc punkt (2) i (4) widzimy, że różniczkę funkcji (jeżeli istnieje) możemy zapisać w postaci
(dla prostoty oznaczeń piszemy zamiast ).
(6) Oznaczając pochodną funkcji w punkcie przez a pochodne przez możemy nadać wzorowi z poprzedniego punktu klasyczną formę
(7) W przypadku funkcji wzór z poprzedniego punktu sprowadza się do wzoru
W przypadku funkcji pojęcia pochodnej (w elementarnym sensie) i różniczki różnią się. Jest to jednak różnica tylko pozorna, gdyż każdej pochodnej odpowiada różniczka a każdej różniczce odpowiada pochodna
Uogólnienia
Pochodna funkcji ma wiele daleko idących uogólnień. Są to m.in. pochodna Frecheta i pochodna Gateaux. W przypadku gdy m=1 (tzn. w przypadku funkcji ) pochodna ma bardzo głębokie uogólnienie w postaci -formy różniczkowej.
Zobacz też
Bibliografia
- Michael Spivak: Analiza matematyczna na rozmaitościach. Warszawa: Wydawnictwo Naukowe PWN, 2006. Brak numerów stron w książce
Przypisy
- ↑ Spivak definiuje pochodną wzorem
jednakże norma w liczniku jest redundantna, ponieważ w przestrzeniach unormowanych