Przemiana eutektycznaPrzemiana eutektyczna – odwracalna przemiana fazowa, w wyniku której przy chłodzeniu z cieczy o składzie eutektycznym wydziela się mieszanina dwóch faz stałych (eutektyka). Dla określonych układów o danym składzie chemicznym zachodzi w konkretnej temperaturze, zwanej eutektyczną[1]. Ogólne informacjegdzie:
Przemiana eutektyczna będzie występować w układach, których składniki charakteryzują się:
Powyższy podział determinowany jest przez regułę Hume’ego-Rothery’ego. W pierwszym przypadku ciecz rozpada się na mieszaninę złożoną z czystych składników. W drugim przypadku z cieczy wydzielają się podczas chłodzenia roztwory stałe[1]. Należy pamiętać o tym, że krzepnięcie nie może się obywać dokładnie w temperaturze eutektycznej TE. Z termodynamicznego punktu widzenia wiązałoby się to z utworzeniem eutektyki o nieskończenie dużych odległościach międzypłytkowych. Dodatkowo kryształy faz stałych α i β mogą w tej temperaturze współistnieć w równowadze jedynie z cieczą o składzie eutektycznym (pozbawionej gradientów koncentracji)[3]. W układzie podwójnym przez α będziemy rozumieć roztwór składnika B w A, a przez β roztwór składnika A w B[1]. Wzrostowi kryształów fazy α towarzyszy wypychanie do cieczy składnika B, a wzrostowi fazy β wypychanie składnika A. Skończona prędkość wzrostu płytek eutektyki musi prowadzić do gromadzenia się składników przed rosnącymi płytkami i wywołuje zmiany składu chemicznego cieczy przy powierzchni międzyfazowej. Dla temperatury równowagowej dopuszczalne są jedynie nieskończenie małe odchyłki stężenia w odniesieniu do składu eutektycznego[3]. Charakterystycznym miejscem w układzie równowagi wykazującego istnienie przemiany eutektycznej jest punkt eutektyczny cE. Ze względu na zawartość domieszki względem tego punktu można wyróżnić trzy stopy:
Otrzymywanie stopu podeutektycznegoStop o składzie bogatszym w składnik A (rozpuszczalnik) względem punktu eutektycznego nazywany jest stopem podeutektycznym. Na układzie podwójnym leży na lewo od tego punktu. Dla układu wykazującego brak rozpuszczalności w stanie stałym z cieczy wydzielają się kryształy składnika A. Ze spadkiem temperatury wydzielają się kolejne kryształy składnika A, a ciecz ubożeje w niego. W temperaturze bliskiej temperaturze zajścia przemiany eutektycznej ciecz osiąga skład eutektyczny. Przemiana eutektyczna pozostałej cieczy powoduje wydzielenie się mieszaniny składników A i B. Struktura stopów podeutektycznych składa się z dużych, pierwotnych kryształów składnika A, które wydzielają się na początku chłodzenia z cieczy i mieszaniny drobnych kryształów A i B. Dla układu wykazującego ograniczoną rozpuszczalność w stanie stałym można wyróżnić dwa przypadki, gdy przebiega:
Dla pierwszego przypadku na początku krystalizacji z cieczy wydzielają się kryształy roztworu stałego α. Krystalizacja kończy się, dopiero gdy utworzone kryształy mają skład chemiczny identyczny ze składem chemicznym pierwotnego roztworu ciekłego. Nadmiar składnika B wydziela się z roztworu stałego α w postaci kryształów roztworu stałego β. Owe kryształy wydzielone z α nazywa się kryształami wtórnymi β”. Dla drugiego przypadku na początku krystalizacji wydzielają się kryształy roztworu stałego α. Przy temperaturze eutektycznej faza α charakteryzuje się największą rozpuszczalnością składnika B, a nie skrystalizowana jeszcze ciecz ma skład eutektyczny. Ta pozostała ciecz ulega przemianie eutektycznej w mieszaninę faz α i β. Otrzymuje się strukturę dużych kryształów fazy α i otaczającą ją eutektykę drobnych kryształów α i β[1][2]. Otrzymywanie stopu eutektycznegoStop o składzie eutektycznym, czyli odpowiadający punktowi eutektycznemu nazywany jest stopem eutektycznym. Dla układu wykazującego brak rozpuszczalności w stanie stałym z cieczy w temperaturze zajścia przemiany eutektycznej wydziela się mieszanina kryształów A i B. Dla układu wykazującego ograniczoną rozpuszczalność w stanie stałym z cieczy w temperaturze zajścia przemiany eutektycznej wydziela się mieszanina kryształów faz α i β[1][2]. Otrzymywanie stopu nadeutektycznegoStop o składzie bogatszym w składnik B (domieszka) względem punktu eutektycznego nazywany jest stopem nadeutektycznym. Na układzie podwójnym leży na prawo od tego punktu. Dla układu wykazującego brak rozpuszczalności w stanie stałym z cieczy wydzielają się kryształy składnika B. Ze spadkiem temperatury wydzielają się kolejne kryształy składnika B, a ciecz ubożeje w niego. W temperaturze bliskiej temperaturze zajścia przemiany eutektycznej ciecz osiąga skład eutektyczny. Przemiana eutektyczna pozostałej cieczy powoduje wydzielenie się mieszaniny składników A i B. Struktura stopów nadeutektycznych składa się z dużych, pierwotnych kryształów składnika B, które wydzielają się na początku chłodzenia z cieczy i mieszaniny drobnych kryształów A i B. Dla układu wykazującego ograniczoną rozpuszczalność w stanie stałym można wyróżnić dwa przypadki, gdy przebiega:
Dla pierwszego przypadku na początku krystalizacji z cieczy wydzielają się kryształy roztworu stałego β. Krystalizacja kończy się, dopiero gdy utworzone kryształy mają skład chemiczny identyczny ze składem chemicznym pierwotnego roztworu ciekłego. Nadmiar składnika A wydziela się z roztworu stałego β w postaci kryształów roztworu stałego α. Owe kryształy wydzielone z β nazywa się kryształami wtórnymi α”. Dla drugiego przypadku na początku krystalizacji wydzielają się kryształy roztworu stałego β. Przy temperaturze eutektycznej faza β charakteryzuje się największą rozpuszczalnością składnika A, a nie skrystalizowana jeszcze ciecz ma skład eutektyczny. Ta pozostała ciecz ulega przemianie eutektycznej w mieszaninę faz α i β. Otrzymuje się strukturę dużych kryształów fazy β i otaczającą ją eutektykę drobnych kryształów α i β[1][2]. Zakres eutektycznyW praktyce przy uzyskiwaniu eutektyk stosuje się duże prędkości chłodzenia. Oznacza to, iż wzrost eutektyk odbywa się w warunkach odbiegających od równowagi. Wzrost prędkości chłodzenia powoduje zmianę mikrostruktury, którą uzyskuje się na końcu krystalizacji. Zakres temperatur i składów, w którym po krzepnięciu uzyskuje się całkowicie eutektyczną strukturę nazwano zakresem eutektycznym. W przypadku podejścia termodynamicznego faza ciekła mieszcząca się w zakresie pomiędzy ekstrapolowanymi liniami likwidus jest niestabilna w odniesieniu do fazy α i β. W tym zakresie przechłodzona ciecz może rozpaść się na mieszaninę dwóch faz stałych. Rzeczywisty zakres eutektyczny jest węższy i nie pokrywa się z bezpośrednio ekstrapolowanymi liniami likwidus. Empirycznie wykazano istnienie w układach metalicznych dwóch rodzajów zakresów:
Przypisy
|