Silnik o zapłonie samoczynnym (znany jako silnik wysokoprężny lub silnik Diesla, ZS) – silnik cieplnyspalinowytłokowy o spalaniu wewnętrznym, w którym ciśnienie maksymalne czynnika jest znacznie większe niż w silnikach niskoprężnych (z zapłonem iskrowym), a do zapłonu paliwa nie jest wymagane zewnętrzne źródło energii – następuje zapłon samoczynny[1]. Do cylindra dostarczane jest powietrze, a kiedy tłok zbliża się do swojego GMP, następuje wtrysk paliwa, które następnie spala się po przekroczeniu w komorze spalania temperatury jego zapłonu. Do zainicjowania zapłonu nie są potrzebne tak jak w przypadku silnika o zapłonie iskrowym zewnętrzne źródła ciepła[1]. Stopień sprężania w silnikach wysokoprężnych mieści się w przedziale 12–25[1].
Historia
Według publikacji Niemieckiej Akademii Nauk, historia silnika wysokoprężnego zaczyna się od wypożyczenia przez Rudolfa Dieselapruskiego patentu (wydanego w Poznaniu) od Jana Nadrowskiego, którego Nadrowski nie zgłosił w Reichsamtcie(inne języki), gdyż wiązało się to z pewnym kosztami. Na podstawie patentu Nadrowskiego Diesel opatentował silnik w Monachium i zarejestrował w Reichsamtcie. Nadrowski wytoczył Dieslowi proces o oszustwo. Na pytanie sądu czy Diesel wcześniej zajmował się tematem silnika wysokoprężnego, pozwany Diesel przedłożył schemat chłodziarki na amoniak Ferdinanda Carrégo.[potrzebny przypis]
W 1892 roku Rudolf Diesel skonstruował silnik o nieco zmienionej konstrukcji i zasadzie działania, niż silniki spalinowe znane dotychczas. Przyświecającym mu celem było stworzenie maszyny jeszcze wydajniejszej, a opierającej się na ogólnej koncepcji silnika spalinowego. 23 lutego 1893 r. zdobył patent na swą konstrukcję „silnika o zapłonie samoczynnym”.
W roku 1897 Rudolf Diesel zbudował pierwszy dwucylindrowy silnik o zapłonie samoczynnym, który otrzymał nagrodę Grand Prix na wystawie w Paryżu.
Konstrukcja silnika, którą opracował R. Diesel była bardzo zawodna i trudna w eksploatacji poprzez zastosowanie wtrysku paliwa do cylindra za pomocą sprężonego powietrza. Układ wtryskowy wymagał wielostopniowej sprężarki, aby uzyskać wystarczająco wysokie ciśnienie powietrza, za pomocą którego wtryskiwana i rozpylana była dawka paliwa. Przy ówczesnej technologii materiałowej zapewnienie odpowiedniej trwałości i niezawodności sprężarki było trudne, powiększało to gabaryty i ciężar niemałego silnika, oraz zwiększało liczbę części ruchomych wymagających okresowego serwisowania. Dopiero opracowanie hydraulicznego systemu wtrysku paliwa (James Mc Kechnie patent w 1910) pozwoliło na szeroki rozwój silników wysokoprężnych pracujących na oleju napędowym, ale już nie według klasycznego obiegu Diesla (stałe ciśnienie spalania), tylko według obiegu Sabathe’a (przemiana izochoryczna i przemiana izobaryczna).
Dużą rolę w rozwoju silnika odegrał inż. Prosper L’Orange zatrudniony w przedsiębiorstwie Benz & Cie, który zaprojektował w 1908 r. komorę wstępną. Pierwszy silnik dieslowski produkcji przedsiębiorstwa MAN był jednocylindrowym gigantem o pojemności niemal 20 litrów, który przy prędkości 172 obrotów na minutę rozwijał moc prawie 15 kW.[potrzebny przypis]
W 1936 roku Mercedes-Benz zastosował silnik diesla po raz pierwszy w seryjnym aucie osobowym[2].
Kalendarium
1897 – prace rozwojowe silnika doprowadziły do uzyskania silnika o stosunkowo dobrych właściwościach eksploatacyjnych,
Zassane do cylindra powietrze (o temperaturze zbliżonej do temperatury otoczenia) jest następnie sprężane w wyniku ruchu tłoka w stronę głowicy przy zamkniętych zaworach. Podczas sprężania rośnie intensywnie temperatura powietrza do bardzo wysokiej wartości[1].
Praca (ekspansja)
Temperatura powietrza pod koniec sprężania jest tak wysoka, że możliwy jest zapłon wtryśniętej dawki paliwa do przestrzeni nad tłokiem znajdującym się w pobliżu górnego martwego położenia[1]. Paliwo wtryskiwane jest pod wysokim ciśnieniem (zob. hydrauliczny system wtrysku paliwa), dzięki czemu uzyskuje się dobre rozpylenie paliwa. Bardzo małe krople paliwa otoczone gorącym powietrzem szybko odparowują, a pary paliwa, dzięki dużej turbulencji, dobrze mieszają się z powietrzem tworząc jednorodny palny gaz. Gaz ten ulega samozapłonowi wywołanemu wysoką temperaturą. W wyniku spalania silnie rośnie temperatura gazu. Spalanie rozpoczyna się, gdy tłok znajduje się w pobliżu górnego położenia zwrotnego tłoka[1]. Jest to początek ekspansji czynnika roboczego i wykonywania pracy. Początkowo, wraz ze wzrostem temperatury, rośnie także ciśnienie czynnika, lecz wzrost prędkości poruszania się tłoka powoduje, że ciśnienie zaczyna maleć, a rośnie objętość właściwa gazu. Spalanie kończy się jeszcze w czasie ruchu tłoka w stronę dolnego martwego położenia.
Podczas suwu pracy ujawnia się główna różnica pomiędzy silnikiem o zapłonie samoczynnym a silnikiem o zapłonie iskrowym pracującym według cyklu Otta. W silnikach o zapłonie iskrowym spalanie mieszanki zachodzi bardzo szybko i wiąże się z gwałtownym wzrostem temperatury i ciśnienia w cylindrze (przemiana izochoryczna). W silnikach Diesla spalanie jest wolniejsze i następuje w dużej mierze podczas cofania tłoka. Ciśnienie podczas spalania jest mniej więcej stałe, rośnie natomiast temperatura i objętość gazu (czyli jest to przemiana izobaryczna).
Wydech
Gdy tłok znajduje się w pobliżu dolnego martwego położenia, następuje otwarcie zaworu wylotowego. Ponieważ ciśnienie gazu w cylindrze jest wyższe od ciśnienia otoczenia, następuje wylot gazu do otoczenia. Zawór ten jest otwarty także podczas ruchu tłoka w kierunku głowicy i prawie wszystkie gazy spalinowe zostają wydalone z cylindra.
Podstawy termodynamiczne
Obiegiem porównawczym współczesnych silników wysokoprężnych jest obieg Seiligera-Sabathé. Obieg ten składa się z następujących przemian charakterystycznych:
Obieg porównawczy jest obiegiem teoretycznym. Silnik rzeczywisty pracuje wg obiegu, składającego się z nieco innych przemian. Sprężanie i rozprężanie nie są adiabatyczne, ponieważ występuje wymiana cieplna ze ściankami cylindra, głowicą, tłokiem i innymi elementami. Nawet, gdyby występujące procesy były adiabatyczne, nie byłyby odwracalne. Ogrzewanie czynnika nie jest izobaryczne, następuje najpierw wzrost ciśnienia, a potem jego spadek. Najważniejszą różnicą jest to, że obieg porównawczy opisuje układ zamknięty (wykorzystywany jest wciąż ten sam czynnik), a obieg rzeczywisty układ otwarty (następuje wymiana czynnika roboczego).
Rozwiązania konstrukcyjne
W powszechnie stosowanych silnikach paliwo wtryskiwane jest do komory wstępnej, komory wirowej lub bezpośrednio do cylindra. W silnikach z komorą wstępną i wirową stosuje się zwykle świece żarowe, których żarzenie (rozgrzanie do czerwoności) wspomaga wystąpienie samozapłonu w zimnym silniku. Występuje tu bowiem silniejsze chłodzenie sprężanego powietrza od chłodnych ścianek cylindra i głowicy, niż w przypadku silnika z wtryskiem bezpośrednim. Zasilanie paliwem odbywa się poprzez układ hydraulicznego systemu wtrysku paliwa. Są to pompy sekcyjne, pompy rozdzielaczowe i nowoczesne rozwiązania konstrukcyjne (pompowtryskiwacze, system common rail) – te ostatnie konstrukcje świec żarowych zasadniczo nie wymagają.
Paliwa
Paliwem spalanym w silniku wysokoprężnym jest zwykle olej napędowy lub (w przypadku wolnobieżnych silników wielkogabarytowych) mazut. Istotną cechą paliw dla silników wysokoprężnych jest liczba cetanowa, która świadczy o zdolności do samozapłonu. Ponadto paliwo musi spełniać funkcje smarne w układzie wtrysku paliwa, przez co paliwa alternatywne do silników wysokoprężnych (np. zużyty lub świeży olej roślinny – zob. olej rzepakowy) do nowoczesnych systemów wtrysku nie nadają się, ponieważ istnieje możliwość zatarcia i zablokowania sadzami precyzyjnych otworków wtryskiwaczy. Ponadto jego liczba cetanowa jest niska, co stanowi istotną wadę (zwiększa się znacznie zwłoka zapłonu i silnik wchodzi w obszar dymienia). Znacznie lepsze są estry olejów roślinnych (tzw. biodiesel). Zużycie tego paliwa jest wyższe o kilka procent, co wynika z mniejszej wartości opałowej niż oleju napędowego. Warto wspomnieć, że pierwszy silnik wysokoprężny, zbudowany przez Rudolfa Diesla zasilany był olejem arachidowym.
Wraz z powietrzem przenikają do górnych dróg oddechowych i, w zależności od wielkości, dalej do innych narządów. PM10 zatrzymują się w płucach, PM2,5 docierają do oskrzeli, natomiast mikrocząsteczki są na tyle małe, że przez oskrzela dostają się do krwiobiegu i są rozprowadzane po całym organizmie.
Badania dowodzą, że nawet ekspozycja na krótkotrwałe wysokie stężenie PM10 może wywołać zawał serca lub udar mózgu[5].
Cząsteczki zatrzymujących się w płucach powodują kaszel, zadyszkę oraz zwiększają ryzyko zakażenia infekcjami układu oddechowego[6].
Powodują zaostrzenie objawów alergicznych oraz objawów chorób układu oddechowego, np. astmy[7].
Nadmierna ekspozycja na PM2,5 i PM10 jest czynnikiem ryzyka nowotworu płuc[8].
Cząsteczki stałe we wdychanym powietrzu podnoszą poziom kortyzolu (hormonu stresu)[9].
W 2019 roku udowodniono wpływ dwutlenku azotu na rozwój astmy u dzieci żyjących w miastach. Szacuje się, że aż 95% przypadków astmy dziecięcej na świecie da się powiązać z ekspozycją na zanieczyszczenia zawierające NO2[10].
Długofalowo, przy nadmiernej ekspozycji, dwutlenek azotu jest czynnikiem ryzyka chorób układu oddechowego i układu sercowo-naczyniowego oraz nowotworów płuc[11] i raka piersi[12].
Dłuższa ekspozycja na ozon prowadzi do powstawania stanów zapalnych w obrębie dróg oddechowych oraz stresu oksydacyjnego[13].
Mieszkańcy obszarów, na których występują wysokie poziomy ozonu troposferycznego często doświadczają bólu płuc w trakcie oddychania, bólu gardła, podrażnień śluzówki nosa, kaszlu, łzawienia oczu, bólu głowy, senności.
W zanieczyszczeniach pochodzących z pojazdów z silnikiem diesla występują przede wszystkim duże węglowodory aromatyczne np. najczęściej benzopiren. To właśnie one uważane są za kancerogenne[14].
Aktualne dane wskazują na ich związek z rozwojem chorób układu sercowo-naczyniowego, mają również negatywny wpływ na rozwój płodu[15].
Odmiany PAHs, zawierające atomy azotu, siarki lub tlenu na pierścieniach, zaburzają pracę układu endokrynnego, głównie prowadząc do wzrostu poziomu estrogenów[15].
↑ abcdefgJan Aleksander Wajand, Jan Tomasz Wajand: Tłokowe silniki spalinowe średnio- i szybkoobrotowe. Warszawa: Wydawnictwa Naukowo-Techniczne, 2005, s. 89-123. ISBN 83-204-3054-2.