Convexidade é um conceito estudado em microeconomia, na Teoria do consumidor, e diz o seguinte: as médias são preferíveis ao invés dos extremos. Exemplificando: com determinada renda (ou orçamento) o consumidor tem a possibilidade de adquirir dois bens, por exemplo. Ele pode ter 50 unidades do bem 1 e nenhuma do bem 2; ou 50 unidades do bem 2 e nenhuma do bem 1; ou pode obter 25 unidades de cada. De acordo com o pressuposto da convexidade, o consumidor ficará com a última opção, 25 unidades do bem 1 e 25 do bem 2, pois suas necessidades serão melhor atendidas com um pouco de cada bem, não com muito de um e nada de outro. O nome convexidade é dado por conta da forma convexa[1] das curvas de indiferença.
Em um espaço vetorialreal de duas dimensões pode ser definido um sistema de coordenadas cartesiano no qual todo ponto é identificado por uma lista de dois números reais, chamados de "coordenadas", que são denotados por convenção de x e y. Dois pontos no plano cartesiano podem ser somados como coordenadas
(x1, y1) + (x2, y2) = (x1+x2, y1+y2);
Além disso, um ponto pode ser multiplicado por cada número real λ como coordenadas
λ (x, y) = (λx, λy).
De modo mais geral, qualquer espaço vetorial real de dimensões (finitas) D pode ser visto como um conjunto de todas as possíveis listas de D números reais { (v1, v2, . . . , vD) } juntos com duas operações: adição vetorial e multiplicação por um número real. Para espaços vetoriais com dimensões finitas, as operações de adição de vetores e multiplicação por números reais podem ser definidas em termos de coordenadas, seguindo o exemplo do plano cartesiano.
Conjuntos convexos
Em um espaço vetorial real, um conjunto é definido ser convexo se, para cada par de seus pontos, todo ponto no segmento de reta que as junta é coberta pelo conjunto. Por exemplo, um cubo sólido é convexo. No entanto, qualquer coisa que é oca ou com relevo, por exemplo, uma forma crescente, é não-convexa. Por sua vez, o conjunto vazio é convexo.
Mais formalmente, um conjunto Q é convexo se, para todos os pontos, v0 and v1 in Q e para cada número real λ no intervalo unitário [0,1], o ponto
Por indução matemática, um conjunto Q é convexo se e somente se toda combinação convexa dos elementos de Q também pertence a Q. Por definição, uma combinação convexa de um subconjunto indexado {v0, v1, . . . , vD} de um espaço vetorial é qualquer média ponderadaλ0v0 + λ1v1 + . . . + λDvD, para algum conjunto indexado de números reais não-negativos {λd} que satisfazem a equaçãoλ0 + λ1 + . . . + λD = 1
A definição de um conjunto convexo implica que a intersecção de dois conjuntos convexos é um conjunto convexo. De um modo mais geral, a intersecção de uma família de conjuntos convexos é um conjunto convexo.
Para todo subconjunto Q de um espaço vetorial real, sua envoltória convexa Conv(Q) é o conjunto convexo mínimo que contém Q. Assim, Conv(Q) é a intersecção de todos os conjuntos convexos que cobreQ. A envoltória convexa de um conjunto pode ser equivalentemente definido como o conjunto de todas as combinações convexas de pontos em Q.
O hiperplano no teorema pode não ser único, como pode ser visto na segunda figura à direita. Se o conjunto fechado não é convexo, a afirmação do teorema não é verdadeira em todos os pontos da fronteira de como ilustrado na terceira figura à direita.
Economia
Uma cesta ótima de bens ocorre onde o conjunto de preferências convexas do consumidor é apoiada pela restrição orçamentária, como mostrado no diagrama. Se o conjunto de preferências é convexo, então o conjunto de decisões ótimas do consumidor é um conjunto convexo, por exemplo, uma cesta única ótima (ou até mesmo um segmento de reta de cestas ótimas).
Para simplificar, devemos assumir que as preferências de um consumidor podem ser descritas por uma função de utilidade que é uma função contínua, o que implica que os conjuntos de preferências são fechados (Os significados de "conjunto fechado" é explicado abaixo, na subseção de aplicações de otimização).
Se um conjunto de preferências é não-convexo, então alguns preços produzem um orçamento que apoia duas diferentes decisões ótimas de consumo. Por exemplo, pode-se imaginar que, em um zoológico, um leão custa tanto quanto uma águia, e o orçamento é suficiente para apenas uma águia ou um leão. Pode-se supor também que o dono do zoológico vê cada animal como igualmente valiosos. Neste caso, o zoológico poderia comprar um leão ou uma águia. Obviamente, o dono do zoológico não deseja comprar a metade de cada um dos animais. Portanto, as preferências do dono do zoológico são não-convexas: ele prefere ter uma combinação estritamente convexa de ambos os animais.
Os economistas tem cada vez mais estudado conjuntos não-convexos com análise não suave, que generaliza a análise convexa. "Não-convexidades na produção e consumo... requerem ferramentas matemáticas que vão além da convexidade, e seu desenvolvimento teve de esperar a invenção do cálculo não-suave", como descrito por Rockafellar Wets[23] e Mordukhovich,[24] de acordo com Khan.[3] Brown escreveu que a "maior inovação metodológica na análise do equilíbrio geral das firmas com controle sobre os preços" era "a introdução de métodos de não-análise, como uma síntese da análise global (topologia diferencial) e da análise convexa." De acordo com Brown, "A análise não suave aumenta a aproximação local de variedades aos planos tangentes [e aumenta] a aproximação análoga de conjuntos convexos a cones tangentes" que podem ser não suaves ou não-convexos.[25] Os economistas também têm usado a topologia algébrica.[26]
↑Pages 392–399 and page 188: Arrow, Kenneth J.; Hahn, Frank H. (1971). «Appendix B: Convex and related sets». General competitive analysis. Col: Mathematical economics texts [Advanced textbooks in economics], 6 [12] (em inglês). San Francisco, CA: Holden-Day, Inc. [North-Holland]. pp. 375–401. ISBN0 444 85497 5. MR439057
Pages 52–55 with applications on pages 145–146, 152–153, and 274–275: Mas-Colell, Andreu (1985). «1.L Averages of sets». The Theory of General Economic Equilibrium: A Differentiable Approach. Col: Econometric Society Monographs, 9 (em inglês). [S.l.]: Cambridge UP. ISBN0-521-26514-2. MR1113262
Theorem C(6) on page 37 and applications on pages 115-116, 122, and 168: Hildenbrand, Werner (1974). Core and equilibria of a large economy. Col: Princeton studies in mathematical economics, 5 (em inglês). Princeton, N.J.: Princeton University Press. pp. viii+251. ISBN978-0691041896. MR389160
↑Pages 112–113 in Section 7.2 "Convexification by numbers" (and more generally pp. 107–115): Salanié, Bernard (2000). «7 Nonconvexities». Microeconomics of market failures English translation of the (1998) French Microéconomie: Les défaillances du marché (Economica, Paris) ed. Cambridge, MA: MIT Press. pp. 107–125. ISBN0-262-19443-0, 978-0-262-19443-3 Verifique |isbn= (ajuda)
Page 628: Mas–Colell, Andreu; Whinston, Michael D.; Green, Jerry R. (1995). «17.1 Large economies and nonconvexities». Microeconomic theory. [S.l.]: Oxford University Press. pp. 627–630. ISBN978-0195073409
↑Page 169 in the first edition: Starr, Ross M. (2011). «8 Convex sets, separation theorems, and non-convex sets in RN». General equilibrium theory: An introduction Second ed. Cambridge: Cambridge University Press. ISBN9780521533867. MR1462618
In Ellickson, page xviii, and especially Chapter 7 "Walras meets Nash" (especially section 7.4 "Nonconvexity" pages 306–310 and 312, and also 328–329) and Chapter 8 "What is Competition?" (pages 347 and 352): Ellickson, Bryan (1994). Competitive equilibrium: Theory and applications. [S.l.]: Cambridge University Press. 420 páginas. ISBN9780521319881. doi:10.2277/0521319889
↑Theorem 1.6.5 on pages 24–25: Ichiishi, Tatsuro (1983). Game theory for economic analysis. Col: Economic theory, econometrics, and mathematical economics. New York: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers]. pp. x+164. ISBN0-12-370180-5. MR700688
↑Pages 127 and 33–34: Cassels, J. W. S. (1981). «Appendix A Convex sets». Economics for mathematicians. Col: London Mathematical Society lecture note series. 62. Cambridge, New York: Cambridge University Press. pp. xi+145. ISBN0-521-28614-X. MR657578
↑Pages 93–94 (especially example 1.92), 143, 318–319, 375–377, and 416: Carter, Michael (2001). Foundations of mathematical economics. Cambridge, MA: MIT Press. pp. xx+649. ISBN0-262-53192-5. MR1865841
Page 309: Moore, James C. (1999). Mathematical methods for economic theory: Volume I. Col: Studies in economic theory. 9. Berlin: Springer-Verlag. pp. xii+414. ISBN3-540-66235-9. MR1727000
Pages 47–48: Florenzano, Monique; Le Van, Cuong (2001). Finite dimensional convexity and optimization in cooperation with Pascal Gourdel. Col: Studies in economic theory. 13. Berlin: Springer-Verlag. pp. xii+154. ISBN3-540-41516-5. MR1878374
↑Sraffa, Piero (1926). «The Laws of returns under competitive conditions». Economic Journal. 36 (144). pp. 535–550. JSTOR2959866
↑Hotelling, Harold (1938). «The General welfare in relation to problems of taxation and of railway and utility rates». Econometrica. 6 (3). pp. 242–269. JSTOR1907054
↑Pages 5–7: Quinzii, Martine (1992). Increasing returns and efficiency Revised translation of (1988) Rendements croissants et efficacité economique. Paris: Editions du Centre National de la Recherche Scientifique ed. New York: Oxford University Press. pp. viii+165. ISBN0-19-506553-0
↑Pages 106, 110–137, 172, and 248: Baumol, William J.; Oates, Wallace E.; with contributions by V. S. Bawa and David F. Bradford (1988). «8 Detrimental externalities and nonconvexities in the production set». The Theory of environmental policy Second ed. Cambridge: Cambridge University Press. pp. x+299. ISBN9780521311120. doi:10.2277/0521311128
Starrett discute não-convexidades em seu livro-texto sobre economia pública (páginas 33, 43, 48, 56, 70–72, 82, ;147, e 234–236): Starrett, David A. (1988). Foundations of public economics. Col: Cambridge economic handbooks. Cambridge: Cambridge University Press
↑Radner, Roy (1968). «Competitive equilibrium under uncertainty». Econometrica. 36. pp. 31–53
↑Page 270: Drèze, Jacques H. (1987). «14 Investment under private ownership: Optimality, equilibrium and stability». In: Drèze, J. H. Essays on economic decisions under uncertainty. Cambridge: Cambridge University Press. pp. 261–297. ISBN0-521-26484-7. MR926685 (Originalmente publicado em Drèze, Jacques H. (1974). «Investment under private ownership: Optimality, equilibrium and stability». In: Drèze, J. H. Allocation under Uncertainty: Equilibrium and Optimality. New York: Wiley. pp. 129–165)
↑Page 371: Magill, Michael; Quinzii, Martine (1996). «6 Production in a finance economy». The Theory of incomplete markets. Cambridge, Massachusetts: MIT Press. pp. 329–425
↑Rockafellar, R. Tyrrell; Wets, Roger J-B (1998). Variational analysis. Col: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 317. Berlin: Springer-Verlag. pp. xiv+733. ISBN3-540-62772-3. MR1491362
↑Chapter 8 "Applications to economics", especially Section 8.5.3 "Enter nonconvexity" (and the remainder of the chapter), particularly page 495:
Mordukhovich, Boris S. (2006). Variational analysis and generalized differentiation II: Applications. Col: Grundlehren Series (Fundamental Principles of Mathematical Sciences). 331. [S.l.]: Springer. pp. i–xxii and 1–610. MR2191745
Rockafellar, R. Tyrrell (1997). Convex analysis. Col: Princeton landmarks in mathematics Reprint of the 1979 Princeton mathematical series 28 ed. Princeton, NJ: Princeton University Press. pp. xviii+451. ISBN0-691-01586-4
Schneider, Rolf (1993). Convex bodies: The Brunn–Minkowski theory. Col: Encyclopedia of mathematics and its applications. 44. Cambridge: Cambridge University Press. pp. xiv+490. ISBN0-521-35220-7. MR1216521
Notas
Este artigo foi inicialmente traduzido, total ou parcialmente, do artigo da Wikipédia em inglês cujo título é «Convexity in economics».