Share to: share facebook share twitter share wa share telegram print page

 

Função característica (probabilidade)

Em probabilidade, a função característica de uma variável aleatória X é a função

quando esta esperança existe, em que t é o argumento (real ou imaginário) da função característica e i é uma raiz quadrada de menos um.

Toda variável aleatória contínua ou discreta possui função característica, que é calculada, respectivamente, por:

Através da Fórmula de Euler, podemos escrever:

E, assim, o cálculo da esperança, para os casos contínuo e discreto, fica:

A função característica existe para todo A função característica é também chamada de Transformada de Fourier de f .

Definição formal

Se X é uma variável aleatória simples, então [1]

arbitrário.

Propriedades

Cada uma das funções é contínua e limitada[2].

Exemplos de usos

  • (Teorema da continuidade de Lévy) Sejam e vetores aleatórios em Então

converge em distribuição para se e somente se é contínua e limitada[3].

Ver também

Referências

  1. Brummelhuis, Raymond. Mathematical Methods. Lecture notes. Chapter 7- Characteristic functions of random variables. Disponível em: <http://www.ems.bbk.ac.uk/for_students/msc_finEng/math_methods/lecture7.pdf>. Acesso em: 12 de junho de 2011.
  2. VAN DER VAART, A. (1998). Asymptotic statistics. New York: Cambridge University Press. Página 13.
  3. VAN DER VAART, A. (1998). Asymptotic statistics. New York: Cambridge University Press.Página 13.
Este artigo é um esboço. Você pode ajudar a Wikipédia expandindo-o. Editor: considere marcar com um esboço mais específico.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya