Este artigo ou se(c)ção trata de uma missão espacial em curso. A informação apresentada pode mudar com frequência. Não adicione especulações, nem texto sem referência a fontes confiáveis. Editado pela última vez em 16 de janeiro de 2025.
O Telescópio Espacial James Webb (em inglês James Webb Space Telescope, JWST) é um telescópio espacial desenvolvido em conjunto pela NASA, a ESA e a CSA,[4] com a finalidade de colocar no espaço um observatório para captar a radiação infravermelha. O telescópio pode observar a formação das primeiras galáxias e estrelas, estudar a evolução das galáxias e ver os processos de formação das estrelas e dos planetas.[5] O telescópio foi inicialmente denominado de Next Generation Space Telescope ou NGST. O termo "Next Generation" refere-se ao fato que se pretende que ele venha a substituir o Telescópio espacial Hubble, pois após o seu lançamento, novas tecnologias foram desenvolvidas, permitindo construir o novo telescópio sob uma nova concepção.[6] Posteriormente o telescópio foi renomeado em 2002, em honra a um antigo administrador da agência espacial americana, James Edwin Webb, que liderou o programa Apollo, além de uma série de outras importantes missões espaciais.[7]
Este telescópio tem a intenção de substituir parcialmente as funções do telescópio espacial Hubble. Sua massa equivale a aproximadamente metade do Hubble, porém seu espelho primário possui um diâmetro 2,5 vezes maior e uma área de espelho seis vezes maior que a do Hubble, permitindo captar muito mais luz.[8] O telescópio também tem um melhor equipamento para captar a radiação infravermelha. Ele também operara bem mais distante da Terra, orbitando no halo que constitui o segundo ponto de Lagrange L2.[9] No total, o programa de desenvolvimento e construção do James Webb, que durou dezessete anos do comissionamento até a conclusão da construção, custou aproximadamente US$ 10 bilhões de dólares.[10]
O telescópio levou cerca de três meses para atingir a sua órbita final. Sua vida útil será limitada pela distância do Ponto de Lagrange L2, além da órbita da Lua e fora do alcance de qualquer nave tripulada disponível atualmente, o que impedirá o telescópio de sofrer manutenção;[11][5] e também pelos estoques limitados de refrigeradores[12] e combustíveis utilizados para mantê-lo em órbita, devendo ser pequena quando comparada com o telescópio Hubble.[13]
O James Webb foi lançado em 25 de dezembro de 2021 a partir do Centro Espacial de Kourou, na Guiana Francesa.[14] No dia 24 de janeiro de 2022, chegou ao seu destino, o ponto de Lagrange L2.[15] Seu primeiro alvo foi a estrela HD 84406, situada a aproximadamente 241 anos-luz da Terra.[16] No entanto, as imagens iniciais produzidas não serão diretamente usadas para estudos científicos, já que estarão desfocadas e servirão apenas para auxiliar no alinhamento dos 18 segmentos hexagonais do espelho primário do telescópio.[17] A publicação das primeiras imagens científicas coloridas e com espectroscopia foi realizada no dia 12 de julho de 2022.[18]
Missão
A missão primária do JWST é a de examinar a radiação infravermelha resultante da grande expansão (Big Bang) e realizar observações sobre a infância do Universo. Para realizar tais estudos com uma sensibilidade sem precedentes, todo o Observatório é mantido frio, e as grandes fontes de interferência de infravermelho como o Sol, a Terra e a Lua são bloqueados.[12]
Para conseguir tal feito, o JWST tem um grande escudo solar dobrável metalizado, que se abriu no espaço e bloqueia todas essas fontes de irradiação de infravermelho; aliado a um sistema de resfriamento com uso de radiadores.[12] O tempo nominal de missão e observações do telescópio é de cinco anos, com o objetivo de que chegue a dez anos.[19] A missão planejada de cinco anos se iniciará após uma fase de comissionamento e ajustes de seis meses.[20]
Objetivos
O Telescópio Espacial James Webb tem quatro objetivos principais:
Pesquisar a luz das primeiras estrelas e galáxias que se formaram no Universo após o Big Bang;
Estudar a formação e evolução das galáxias;
Entender a formação de estrelas e sistemas planetários;
Estudar os sistemas planetários e as origens da vida.[21]
Lançamento
O lançamento (designado "Ariane flight VA256") ocorreu no dia 25 de dezembro de 2021, em um foguete Ariane 5 no Centro Espacial de Kourou, na Guiana Francesa.[14] Após o sucesso do lançamento, o administrador da NASA, Bill Nelson, afirmou que este é "um grande dia para o planeta Terra".[22]
31 minutos após o lançamento, o telescópio iniciou o processo de implantação de seus painéis solares, antena, escudo solar, espelho e braço, que deverá se estender por treze dias.[23]
Astronomia infravermelha
O Telescópio Espacial James Webb é o sucessor formal do Telescópio espacial Hubble, e como seu foco primário é na astronomia infravermelha, ele também é um sucessor do Telescópio espacial Spitzer. O James Webb ultrapassa as capacidades de ambos os predecessores, sendo capaz de ver estrelas e galáxias mais velhas e em maior quantidade.[24] Observar no espectro infravermelho é uma técnica chave para conseguir isso, devido ao desvio cosmológico para o vermelho, e porque este tipo de radiação penetra melhor na poeira e no gás. Isto permite a observação de objetos mais obscuros e frios. Como o vapor d'água e o dióxido de carbono na atmosfera terrestre absorvem a maior parte das frequências neste espectro, a astronomia infravermelha baseada no solo é limitada a faixas de ondas estreitas que a atmosfera absorve menos. Adicionalmente, a atmosfera em si emite este tipo de radiação, frequentemente cobrindo a luz dos objetos sendo observados; o que faz um telescópio espacial ser preferível para observações em infravermelho.[25]
Características
Localização e órbita
O JWST opera em uma órbita de halo, circulando em torno de um ponto no espaço conhecido como ponto Sol-Terra L2 Lagrange, aproximadamente 1 500 000 km além da órbita da Terra ao redor do Sol.[26] Sua posição real varia entre cerca de 250 000 km e 832 000 km de L2 enquanto orbita, mantendo-o fora da sombra da Terra e da Lua. Esse arranjo mantém a temperatura da espaçonave constante e abaixo dos 50 K (-223 °C) necessários para observações infravermelhas fracas.[27]
Controle térmico
O protetor solar JWST é um sistema de controle térmico passivo implantado após o lançamento para proteger o telescópio e a instrumentação da luz e do calor do Sol, da Terra e da Lua. Sua finalidade é permitir que o telescópio infravermelho funcione em ou abaixo de sua temperatura de projeto de 40 kelvins (-233 °C).[28] O telescópio, portanto, usa um grande protetor solar para bloquear a luz e o calor do Sol, da Terra e da Lua, e sua posição perto do Sol-Terra L2 mantém todos os três corpos no mesmo lado da espaçonave o tempo todo.[29] O protetor mantém uma temperatura estável para as estruturas no lado escuro, o que é fundamental para manter o alinhamento preciso dos segmentos do espelho primário no espaço.[30]
Instrumentos
Os três principais módulos de instrumentos do telescópio são:
Integrated Science Instrument Module - (ISIM);
Optical Telescope Element - (OTE);
Space Support Module - (SSM).
O ISIM é um sistema todo distribuído que consiste em um módulo criogênico que é integrado com o OTE e com os software, circuitos de processadores e demais instrumentos eletrônicos, localizados na parte quente do SSM.[31]
O ISIM fornece estrutura, ambiente e meio de transporte para os dados que forem coletados pelos três módulos científicos: NIRCam, NIRSpec e o MIRI. Além sensor de ajuste fino (Fine Guidance Sensor - FGS):
Near Infrared Camera (NIRCam) = Câmera de infravermelho;[32]
Mid Infrared Instrument (MIRI) = Instrumentos para o infravermelho;[33]
Near Infrared Spectrograph (NIRSpec) = Espectrógrafo de infravermelho.[34]
A Northrop Grumman Space Technology é a principal empreiteira responsável pelo desenvolvimento e pela integração do Observatório. Eles são os responsáveis pelo desenvolvimento e construção da nave espacial, que incluem ambos; o corpo principal e o escudo solar.[35] A Ball Aerospace foi subcontratada para desenvolver e construir o Optical Telescope Element (OTE).[20] A Goddard Space Flight Center é a responsável por fornecer o Integrated Science Instrument Module (ISIM).[36]
História
O trabalho no projeto começou há mais de 30 anos na STScI com o desafio de “pensar na próxima grande missão além do Hubble”. O desenvolvimento de um conceito de missão veio em setembro de 1989, com um workshop realizado no STScI, antes do lançamento do Hubble. O workshop cobriu as oportunidades científicas e os desafios tecnológicos de tal missão e baseou-se em pesquisas anteriores até aquela data.[37]
Histórico
Marcos
Ano
Eventos
1996
Iniciado o projeto do Telescópio Espacial de Próxima Geração (8 m)
2002
Telescópio chamado Telescópio Espacial James Webb, alterado para 6 m
As discussões de uma continuação do Hubble começaram na década de 1980, mas um planejamento sério começou no início da década de 1990.[39] O painel UV-Optical in Space da National Academies de 1990 deu impulso ao conceito ao recomendar um telescópio espacial resfriado de 6 metros como sucessor do Hubble. O desenvolvimento de um conceito de Telescópio Espacial de Próxima Geração de 8 metros (NGST) nos próximos dois anos se concentrou em um telescópio visível e infravermelho resfriado, uma vez que ficou claro que era tecnicamente impraticável incluir os recursos de UV.
Em 1993, o Space Telescope Institute Council (STIC) nomeou um comitê para estudar as missões de astronomia espacial do século 21 e dois anos depois, o comitê recomendou um telescópio de 4 m – menor do que o NGST de 8 a 10 metros inicialmente discutido, mas mantendo a capacidade muito importante de ver a luz infravermelha. Mais tarde, a NASA restaurou o NGST para 8 metros.[40]
Basicamente, o conceito de telescópio Hi-Z foi desenvolvido entre 1989 e 1994:[41] um telescópio infravermelho totalmente descoberto de 4 metros de abertura[42] que retrocederia para uma órbita em 3 unidades astronômicas.[43] Esta órbita distante teria se beneficiado da redução do ruído de luz da poeira zodiacal.[44] Outros planos iniciais exigiam uma missão do telescópio precursor do NEXUS.[45]
A correção da ótica defeituosa do Telescópio Espacial Hubble em seus primeiros anos desempenhou um papel significativo no nascimento do JWST. Em 1993, a NASA preparou o STS-61, a missão do ônibus espacial que levaria um substituto para a câmera do HST e um adaptador para seu espectrógrafo de imagem para compensar a aberração esférica em seu espelho primário.
Em 2002, o projeto foi renomeado em homenagem ao segundo administrador da NASA (1961–1968) James E. Webb. Webb liderou a agência durante o programa Apollo e estabeleceu a pesquisa científica como uma atividade central da NASA.[46] Em 2003, a NASA concedeu à TRW o contrato principal de US$ 824,8 milhões para o JWST. O JWST é um projeto da NASA, com colaboração internacional da Agência Espacial Europeia (ESA) e da Agência Espacial Canadense (CSA), que ingressaram formalmente em 2004 e 2007, respectivamente.
O projeto exigia um espelho primário de 6,1 metros e uma data de lançamento de 2010. Mais tarde naquele ano, a TRW foi adquirida pela Northrop Grumman e se tornou a Northrop Grumman Space Technology.[47]
Replanejamento (2005)
O desenvolvimento foi gerenciado pelo Goddard Space Flight Center da NASA em Greenbelt, Maryland, com John C. Mather como cientista do projeto. O contratante principal foi a Northrop Grumman Aerospace Systems, responsável pelo desenvolvimento e construção do elemento da espaçonave, que incluiu o barramento de satélite, protetor solar, Deployable Tower Assembly (DTA) que conecta o Elemento do Telescópio Óptico ao barramento da espaçonave, e o Mid Boom Assembly (MBA), que ajuda a implantar os grandes para-sóis em órbita,[48] enquanto a Ball Aerospace & Technologies foi subcontratada para desenvolver e construir o próprio OTE e o Integrated Science Instrument Module (ISIM).[49]
Multi-campo multi-instrumento (MIMF)
Depois de cumprir o principal marco de alinhar o telescópio ao NIRCam em março de 2022, a equipe do Webb começou a estender o alinhamento do telescópio ao guia (o Sensor de Orientação Fina, ou FGS) e aos outros três instrumentos científicos. Nasa chamou esse processo de seis semanas de alinhamento multi-instrumento multicampo (MIMF).[50]
Impacto por micrometeoroides
O segmento de espelho C3 sofreu um impacto de micrometeoroide de uma grande partícula do tamanho de um grão de poeira entre 23 e 25 de maio,[51] a quinta e maior colisão desde o lançamento, relatado em 8 de junho de 2022, que exigiu que os engenheiros compensassem o ataque usando um atuador de espelho.[52] Apesar dos impactos, um relatório de caracterização da NASA afirma que "todos os modos de observação do JWST foram revisados e confirmados como prontos para uso científico".[53] Até julho de 2022, o Telescópio foi atingido por pelo menos 19 pequenas rochas espaciais, incluindo uma grande que deixou danos visíveis em um dos 18 espelhos do telescópio.[54]
Primeiras imagens
No dia 11 de julho de 2022 a NASA apresentou a primeira imagem de campo profundo tirada pelo James Webb. O presidente americano Joe Biden revelou a imagem por meio de uma transmissão conjunta entre a Casa Branca a Agência Espacial Americana.[55]
No dia 12 de julho de 2022, foi apresentado ao público o que a NASA chamou de "pacote" de imagens feitas pelo James Webb. Diversos objetos foram fotografados e tiveram medições espectrais reveladas.[56]
Imagens divulgadas pela NASA no dia 12 de julho de 2022
Dentro de duas semanas após as primeiras imagens do Webb, vários artigos de pré-impressão descreveram uma ampla gama de galáxias de alto desvio para o vermelho e muito luminosas (presumivelmente grandes) que se acredita datarem de 235 milhões de anos (z=16,7) a 280 milhões de anos após o Big Bang, muito antes do que se sabia anteriormente.[57] Em 17 de agosto de 2022, a NASA divulgou uma grande imagem em mosaico de 690 quadros individuais tirada pela Câmera de Infravermelho Próximo (NIRCam) no Webb de várias galáxias muito antigas.[58][59] Algumas galáxias primitivas observadas pelo Webb como a CEERS-93316, que tem um desvio para o vermelho estimado de aproximadamente z=16,7 correspondendo a 235,8 milhões de anos após o Big Bang, são candidatas a galáxias de alto desvio para o vermelho.[60][61] Em setembro de 2022, buracos negros primordiais foram propostos para explicar essas galáxias inesperadamente grandes e primitivas.[62][63][64]
↑«About Webb/NASA». www.jwst.nasa.gov (em inglês). Consultado em 25 de dezembro de 2021Este artigo incorpora texto desta fonte, que está no domínio público.
↑Yuan, Guan-Wen; Lei, Lei; Wang, Yuan-Zhu; Wang, Bo; Wang, Yi-Ying; Chen, Chao; Shen, Zhao-Qiang; Cai, Yi-Fu; Fan, Yi-Zhong (16 de março de 2023). «Rapidly growing primordial black holes as seeds of the massive high-redshift JWST Galaxies». arXiv:2303.09391 [astro-ph.CO]
↑Su, Bing-Yu; Li, Nan; Feng, Lei (2023). «An inflation model for massive primordial black holes to interpret the JWST observations». arXiv:2306.05364 [astro-ph.CO]